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Abstract

There is a rich amount of information in co-occurrence (presence–absence) data that could be
used to understand community assembly. This proposition first envisioned by Forbes (1907) and
then Diamond (1975) prompted the development of numerous modelling approaches (e.g. null
model analysis, co-occurrence networks and, more recently, joint species distribution models).
Both theory and experimental evidence support the idea that ecological interactions may affect
co-occurrence, but it remains unclear to what extent the signal of interaction can be captured in
observational data. It is now time to step back from the statistical developments and critically
assess whether co-occurrence data are really a proxy for ecological interactions. In this paper, we
present a series of arguments based on probability, sampling, food web and coexistence theories
supporting that significant spatial associations between species (or lack thereof) is a poor proxy
for ecological interactions. We discuss appropriate interpretations of co-occurrence, along with
potential avenues to extract as much information as possible from such data.
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INTRODUCTION

Co-occurrence analysis is the study of interactions between
species distributions, and as such, it has been at the centre of
community ecology for more than 100 years. Throughout this
paper, we assumed an interaction occurs when the presence of
a species has some influence on the occurrence of another.
With the arrival of new statistical methods and the accumula-
tion of observational data, co-occurrence analysis recently
attracted a lot of attention from different fields (e.g. ecology
and microbiology) and for various systems (e.g. boreal forests
and gut microbiome). We believe there is a rich amount of
information in co-occurrence data, but its interpretation
should be done with care. There are several theoretical and
statistical reasons explaining why there is only a weak rela-
tionship between co-occurrence and interactions. Here, we
review the vast literature on co-occurrence and propose a set
of arguments using probability, sampling food web and coex-
istence theories to support our claim that spatial associations
(or lack thereof) between species should not be considered as
a proxy for ecological interactions. Finally, we conclude this
paper by presented different avenues and outstanding ques-
tions that need further investigation to better understand and
predict ecological interactions (Box 1).

A RICH AND LONG DEBATE

It is a truism of ecology that species must co-occur to directly
interact. It is also a truism of population biology that interac-
tions impact demography, which in turn must affect co-occur-
rence. This explains why early on ecologists have proposed and
discussed statistical methods to infer relationships among spe-
cies based on presence–absence data (Forbes, 1907; Michael,

1920; Pielou & Pielou, 1967, 1968; Diamond, 1975). As early as
1907, Forbes proposed a systematic analysis of pairwise co-oc-
currences using the ratio between the number of observed and
expected co-occurrences to determine the degree of association
among pairs of fishes (Forbes, 1907; Alroy, 2015). Some
13 years later, in a modern ‘plea in behalf of quantitative biol-
ogy’, Michael (1920) highlighted several drawbacks of Forbes’
coefficient, notably he pointed out the importance of the spatial
scale of sampling unit to draw meaningful conclusions about
the underlying ecological relationships inferred from it. Hence,
Forbes (1907) was likely the first ecologist to quantify ecological
processes with an index based on an incidence matrix, whereas
Michael (1920) was among the first biologists to point out
potential drawbacks of such indices.
Forbes’ coefficient was forgotten for years and similar

approaches, grounded on the same rationale, have been devel-
oped independently (Alroy, 2015; Arita, 2016). In 1967 and
1968, Pielou and Pielou developed two statistical methods to
discriminate mechanisms of co-existence among Diptera spe-
cies on a bracket fungus by determining whether the frequen-
cies of certain assemblages departed from random
expectations (Pielou & Pielou, 1967, 1968). A few years later,
Diamond (1975) introduced his assembly rules to explain the
checkerboard distributions of bird communities on archipela-
gos. Diamond’s assembly rules were quickly challenged by
Connor & Simberloff (1979) who criticised the lack of random
expectations thereof. This marked the beginning of a still
ongoing debate about the link between co-occurrence data
and species interactions (Gotelli & McCabe, 2002; Connor
et al., 2013; Diamond et al., 2015) and, as a side contribution,
generated a number of new techniques aimed at improving
the extraction of ecological information from co-occurrence
data (e.g. Whittam & Siegel-Causey, 1981).
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The current array of methods available can be classified into
three different categories. First, the matrix-level approaches
aim at determining the main drivers of species’ distribution
for a given community based on the entire incidence matrix
properties (Stone & Roberts, 1990; Gotelli & Ellison, 2002;
Sfenthourakis et al., 2006; Cardillo & Meijaard, 2010; Arita
et al., 2012; Ulrich & Gotelli, 2013). To do so, one or several
indices are computed based on the observation data and com-
pared to random expectations derived from null models. For
instance Patterson & Atmar (1986) used nestedness to support
the hypothesis that selective extinctions occurred in the mam-
mal community of the southern Rocky Mountains. More
recently, following Leibold & Mikkelson (2002), Presley et al.
(2010) proposed a hierarchical approach based on coherence,
species turnover and clumping to characterise the spatial
structure of the community and hence determine the role
played by colonisation and niche partitioning (D’Amen et al.,
2018). The development of these techniques led to more
sophisticated null models, and the successful inclusion of envi-
ronmental variables (Gotelli & Ulrich, 2010) spurred enthusi-
asm for methods originating from research in species
distribution modelling.
The second category originates from developments in spe-

cies distribution models (SDMs) that predict the geographical
distribution of species from abiotic variables (Elith et al.,
2006). Indeed SDMs, developed in the 1990s and the early
2000s were criticised for neglecting biotic interactions (Wisz
et al., 2013) whereas it has been repeatedly shown that biotic
interactions improve the accuracy of predictions (Leathwick &
Austin, 2001; Heikkinen et al., 2007; Meier et al., 2010; Leach
et al., 2016; Barbaro et al., 2019). Consequently, the now so-
called joint species distribution models (JSDMs; Pollock
et al., 2014) were developed and predict the distribution of a
set of species that are potentially interdependent based on abi-
otic factors using the entire incidence matrix (€Ozesmi &
€Ozesmi 1999; Latimer et al., 2009; Ovaskainen et al., 2010,
2016, 2017; Clark et al., 2014; Kaldhusdal et al., 2015; War-
ton et al., 2015; Hui, 2016; Clark et al., 2017; Staniczenko
et al., 2017). In most cases, these models provide individual
species responses to the abiotic environment together with a
covariance matrix whose elements capture the correlations in
the incidence matrix that are not explained by the abiotic fac-
tors. Based on its mathematical definition, this matrix has
been suggested as a robust way of finding significant associa-
tion in co-occurrence data while accounting for environment
filtering (D’Amen et al., 2018) and hence JSDMs are now
used to infer interactions from ecological data (Morales-Cas-
tilla et al., 2015; D’Amen et al., 2018; Barner et al., 2018).
The methods in the last category directly infer ecological

relationships based on the incidence matrix: for each pair of
species, the two vectors of occurrence and an optional set of
covariates (e.g. abiotic factors, species abundances) are com-
bined to compute statistical associations (Veech, 2014; Mor-
ueta-Holme et al., 2016; Mandakovic et al., 2018). Several
techniques have been used to obtain those scores, including
Fisher’s tests (Veech, 2013; Arita, 2016), odds ratios (Lane
et al., 2014), correlations (Steele et al., 2011; Faust & Raes,
2012) and Markov networks (Harris, 2016; Clark et al., 2018;
Popovic et al., 2019). In essence, those approaches are close

to Forbes (1907) coefficient proposed a century ago (and some
are actually very similar, e.g. Veech, 2013; Arita, 2016), but
recent approaches are now focusing on the entire set of the
significant co-occurrence associations, i.e. the co-occurrence
network (Ara�ujo et al., 2011; Tulloch et al., 2016; Kay et al.,
2017). Among these methods, a dividing line must be drawn:
while some approaches interpret variations in co-occurrence
networks as evidence for changes in ecological interactions
(Ara�ujo et al., 2011; Tulloch et al., 2016; Kay et al., 2017),
others treat them as a direct proxy for interactions (Zelezniak
et al., 2015; Harris, 2016).
From the first to the third category of methods, there is a

major conceptual shift from the interpretation of significant
spatial associations in co-occurrence data as a potential sign
of biotic interactions towards the reconstruction of entire eco-
logical networks derived from large presence absence data sets
(Faust & Raes, 2012; Wisz et al., 2013; Berry & Widder,
2014; Zelezniak et al., 2015; Mandakovic et al., 2018).
Although inferring ecological interactions from the easiest
data to acquire (presence–absence data) holds a great appeal,
one should bear in mind that this is feasible only if ecological
interactions leave a signal in the presence–absence data that is
regular enough to be detected and interpreted by adequate
statistical methods. While some recent studies have unveiled
such a regular signal (e.g. Gotelli et al., 2010; Cardillo, 2011),
other have shown that the signal is blurred and diluted in
complex networks (Cazelles et al., 2016) or even absent (Bra-
zeau & Schamp, 2019) and thus, the existence of a signal and
properties thereof are still debated.
In the past 2 years, no less than four examinations have been

proposed of recent statistical approaches used to infer species
associations from presence–absence data (Barner et al., 2018;
Freilich et al., 2018; Thurman et al., 2019; Brazeau & Schamp,
2019). Those studies focused on specific sets of species that met
two criteria: (1) regional scale species presence–absence data
were available and (2) biotic interactions among the species
considered were documented a priori. Using this information,
the ability of existing statistical techniques to detect real interac-
tions (covering the three categories described above) were eval-
uated. Interestingly, these studies reached similar conclusions:
current methods are generally inaccurate, and thus, the spatial
associations detected are poor proxies for biotic interactions.
Even though these papers cast doubts on studies that equate
species co-occurrences to species interactions’ (Barner et al.,
2018), there are two major limits that preclude general conclu-
sions to be drawn from them. First, as these investigations were
carried out on specific systems, the reasons behind the poor per-
formances observed might be, in specific or in general, related
to the particularities of the system itself. Second, it could be
argued that the results obtained merely pinpoint shortcomings
in statistical approaches employed that could be addressed by
future technical advances. Therefore, there is still a need for a
critical examination of the assumptions under which (1) ecolog-
ical interactions actually leave a signal in presence–absence data
and (2) whether it is feasible to detect and interpret this signal
properly; this is especially true given the enthusiasm around the
promise of detecting interactions from presence–absence data,
which may lead to inferences of ecological processes where there
are none (Warren et al., 2014). In the following lines, we
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propose such an examination and develop seven arguments
based on probability, sampling, food web and coexistence theo-
ries supporting that significant spatial associations between spe-
cies (or lack thereof) is a poor proxy for ecological interactions.

INTERPRETATION OF CO-OCCURRENCES USING

CONDITIONAL PROBABILITIES

Through the eyeglass of probability theory, the distribution of
each species can be understood as a Bernouilli random vari-
able (referred to as X); X = 1 for presence, X = 0 for absence
where the probability of occurrence of species A and B are,
respectively, P(XA) and P(XB) and the probability of the co-
occurrence is P(XA, XB). This can then be compared to the
expectation assuming the two species were occurring indepen-
dently from each other, i.e. P(XA) 9 P(XB), often obtained
through randomisation (Gotelli & Graves, 1996; Presley et al.,
2010; Ulrich & Gotelli, 2013). In this respect, it is common
for observations significantly larger or smaller than the ran-
dom expectation to be interpreted as evidence of an ecological
interaction. This is the rationale behind classical approaches
such as the C-score (Stone & Roberts, 1990; Gotelli et al.,
2010); we refer to this departure from a random expectation
as ‘co-occurrence signal’.
An interaction is inferred when the presence of a species at

a given location has an influence (regardless of its nature) on
the probability of observing another species at that same loca-
tion. This can be presented formally by stating that the condi-
tional probability P(XA|XB = 1) is significantly different from
P(XA|XB = 0) (see section I of the Supplementary Information
for further details). This definition of interaction differs from
the conventional definition of interactions used in community
ecology, which states that an interaction is the effect of a spe-
cies on the per capita growth rate of another one (Berlow
et al., 2004). In the following lines, we present arguments
explaining in detail why co-occurrences do not imply interac-
tions using the conditional and joint probability formalism.

Argument 1 – Species occurrences depend on the environment

Rationale
Let’s assume that the occurrence of species A and B are both
conditional on an environmental variable E. In other words,
the occurrence probability of A and B varies along an envi-
ronmental gradient. Assuming that both species do not inter-
act, we may still observe a strong signal in their co-occurrence
profile due to the similarity (or dissimilarity) in their environ-
mental requirements. Figure 1a illustrates an example of how
such a situation occurs in nature (on Mont M�egantic,
Canada).
From a mathematical standpoint, this argument is based on

the fundamental difference between the probability of co-oc-
currence of A and B over the entire environmental gradient

P XA;XBð Þ; ð1Þ
and the expected co-occurrence of the two species for a given
environmental condition

PðXA;XBjEÞ: ð2Þ
In the context of SDMs, independence among species is

assumed, and the general interpretation is that ecological
interactions do not influence species distribution (Jeschke &
Strayer, 2008). In this respect, independence should be mathe-
matically defined as

PðXA;XBjEÞ ¼ PðXAjEÞPðXBjEÞ; ð3Þ
where P(XA|E) and P(XB|E) explicitly state that the probabil-
ity of occurrence of each species is conditional on the environ-
ment. Graphically, Fig. 1b and c depicts conceptually how
typical deciduous and conifer species co-occur along an eleva-
tional gradient. However, the assumption of independence is
often treated in the absence of environmental pressure, thus
defined as:

P XA;XBð Þ ¼ P XAð ÞP XBð Þ: ð4Þ
The critical issue here is that eqn (3) does not imply eqn (4)

(we explain why in the ‘The problem of abiotic factors’ sec-
tion of the Supplementary Information, SI). If interactions are
inferred from spatial associations over an environmental gra-
dient, the variation in the probability of presence for one (or
both) species along the gradient could generate false positives
and more rarely false negatives. We illustrated such a situa-
tion in Fig. 1 where we show how the distribution of the envi-
ronmental values E (Panels d–f) dramatically influences the
observed co-occurrence (Panels g-i), even though the species
are independent.

Conclusion
This argument suggests that any environmental condition
influencing the distribution of two species may cause a strong
co-occurrence signal that could be misinterpreted as ecological
interactions. Furthermore, the sampling design could lead to
different interpretations. Although this argument may suggest
that using models that account for environmental filtering is
appropriate (e.g. JSDMs, Ovaskainen et al., 2010; Warton
et al., 2015; D’Amen et al., 2018), it should not be interpreted
this way. Indeed, the co-occurrence signals (e.g. a significant
positive or negative correlation value) estimated from these
models could originate from any abiotic factors that impact
species differently. Therefore, this correlation cannot be sys-
tematically interpreted as a signal of biotic interactions, as it
could rather express potential non-measured environmental
drivers (or combinations of them) that influence species distri-
bution and co-distribution.
A potentially interesting way to approach this problem is to

use latent variable models (e.g. Warton et al., 2015; Ovaskai-
nen et al., 2017) because latent variables may be able to cap-
ture some unmeasured environmental variables. However, no
distinctions are made about the type of information captured
by latent variables making the use of such technique far from
optimal. This difficulty of discriminating between interaction
and environment using species distribution data has been
shown by Godsoe et al. (2017) for simple interactions using
simulations.
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Figure 1 Species co-occurrences may depend on the abiotic environment. (a) Picture of Mont M�egantic taken in Fall showing spatial repulsion between

conifers (dark green) and deciduous (red, orange and yellow) trees. The zone where tree species co-occur is caused by the elevation gradient and does not

represent interaction among species per se (Savage & Vellend,2015). (b) Occurrence probability of species A (orange) and B (blue) along an environmental

gradient (abscissa). Assuming the environmental gradient presents the full elevation of Mont M�egantic, A is a typical deciduous species, whereas B is a

typical coniferous species, then panel b conceptually depicts an elevation transect of the picture in panel a. (c) Co-occurrence probability of finding both A

and B along the elevation gradient. Recall that species A and B are assumed independent and as such this is the conditional probability resulting from

eqn (3). (d–f) Three contrasting environmental gradients, i.e. three potential probability density functions for environmental values E. (g–i) Product of the
scenarios in panels d–f with the conditional probability of co-occurrence presented in panel c for the two species of panel b. The marginal probability of

co-occurrence for A and B, obtained through integration over the entire environmental gradient, are indicated at the top of each respective panel.
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Argument 2 – The detection of the interaction between two species

vanishes if either of these species interact with other species

Rationale
We focus here on the interaction among three species and
assume that no other factors (biotic, environmental or others)
influence their occurrence. What we show through this argu-
ment is that ecological interactions can influence the presence of
a species in a specific location in unexpected ways. As species
are embedded in complex networks, it becomes problematic to
define a specific association without accounting for other ones.
Cazelles et al. (2016) have already discussed this issue and
showed that the higher the degree of a species (i.e. the number
of interactions between this species and any other) the weaker is
its statistical association with them. In other words, if an inter-
action between two species exists, the existence of another inter-
action hampers the detection of the former.
This problem is illustrated in Fig. 2 with an artificial system

of three species (a herbivore (H) and two plant species (V1
and V2)). We assumed here that the two plants occur inde-
pendently and that the conditional co-occurrences of the her-
bivore with the two plants reflect interaction strengths. Based
on these assumptions, we examine how increasing the interac-
tion strength between H and V2 while keeping the strength of
the interaction between H and V1 constant affects the per-
ceived relationship between H and V1 (see SI section ‘Simula-
tions’ for computational details).
In mathematical terms, the problem highlighted in this

argument is that P(XH) depends on both P(XV1) and P(XV2):

P XHð Þ ¼ PðXHjXV1ÞP XV1ð Þ þ PðXHjXV2ÞP XV2ð Þ ð5Þ
but the detection of the signal in the co-occurrence data of H
and one of the plants, say V1, based on the departure from
random expectation: P(XH,XV1) � P(XH)P(XV1), does not
account for the third species. As a consequence, the associa-
tion profile between H and V1 changes markedly (Fig. 2a–d).
This argument also highlights the necessity of having accurate
knowledge of the probability of occurrence of all species con-
sidered as well as the strength of interaction between H and
V1 in the absence of V2, to correctly interpret the values of
the association. Even for well-known species, gathering this
information can be challenging.

Conclusion
Even though two species may interact strongly, the corre-
sponding association values may be very low because of the
interactions with other species (Cazelles et al., 2016). Recently,
Thurman et al. (2019) presented empirical results that support
this theoretical finding. In their paper, they found that as
more species interact, a general weakening of association
strengths and trend towards positive associations can be
found. As all interactions matter, it thus becomes important
to find adequate approaches to characterise independent inter-
actions while controlling for all the other interactions a spe-
cies may have. A way to overcome this issue would be to
keep exploring partial correlations using Bayesian (Stan-
iczenko et al., 2017) and Markov networks (Harris, 2016;
Clark et al., 2018). Paradoxically, to benefit from such tools

and accurately detect interactions (e.g. to meaningfully use
partial correlations), the entire list of interacting species as
well as the full topology of the network need to be known
beforehand. In a recent study, Popovic et al. (2019) proposed

Figure 2 Co-occurrence signal in a three species system including a

herbivore (H) and two plant species (V1 and V2). Note that the letter ‘V’

was used for ‘vegetation’. The co-occurrence signal is the departure of the

co-occurrence from random expectations, i.e. P(XH,XV1)�P(XH)P(XV1). It

is computed along the gradient made by the occurrence probabilities of

consumer V1 (P(XV1)), whereas the occurrence probabilities of consumer

V2 remains constant at P(XV2) = 0.05 (dark blue), P(XV2) = 0.5 (light

blue) and P(XV2) = 0.95 (orange). In (a) H and V2 are independent and

thus P(XH|XV2) = P(XH)P(XV2), for the three other panels, this

probability increases: 0.2 (b), 0.5 (c) and 0.95 (d). The interaction between

H and V1 remains constant with a value of 0.75 for all panels.
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a generalisation of the ideas proposed by Harris (2016) that
can combine different data types (e.g. presence–absence,
count, biomass, ordinal, etc.) in a single model using Gaussian
copula. This is an interesting development because it focuses
on studying relations among species using data more informa-
tive than presence–absence data. However, the ideas proposed
by Popovic et al. (2019) and Harris (2016) suffer from the
same pitfalls when used on co-occurrence data.

Argument 3 – Species associations could arise indirectly

Rationale
In ecological networks, in addition to direct interactions
(Argument 2), indirect interactions may also generate non-
random associations among species. For instance if a top
predator feeds on a carnivore that in turn feeds on a herbi-
vore, the top predator and the herbivore may co-occur more
frequently than expected even though they do not interact
directly. Using simulated (co-)occurrences data, Cazelles et al.
(2016) have shown a decrease of the co-occurrence signal with
an increase in the shortest path between two species part of
the same ecological network.
In order to illustrate how indirect associations can emerge

from a chain of direct interactions, we consider a chain of
four trophic levels where each species feeds solely on the one
directly below it in the chain (Fig. 3b). Using conditional
probabilities and assuming that a predator cannot survive
without its prey, we obtain.

P XHð Þ ¼ PðXHjXVÞP XVð Þ ð6Þ

P XCð Þ ¼ PðXCjXHÞP XHð Þ ¼ PðXCjXHÞPðXHjXVÞP XVð Þ ð7Þ

P XTð Þ ¼ PðXTjXCÞP XCð Þ
¼ PðXTjXCÞPðXCjXHÞPðXHjXVÞP XVð Þ: ð8Þ

With this example, we examined how increasing the strength
of association between H and V affects the co-occurrence sig-
nal between H and the other species. In this case, the signal is
computed as the difference between the observed co-occur-
rence and the expected one under the assumption that species
are independent (see section ‘Simulation’ in SI for further
details).
Figure 3a shows an increase in the co-occurrence signal for

V-C and V-T as the association strength between V and H
increases, meaning that the signal propagates through the net-
work. On the other hand, this illustration also shows that the
signal weakens along the chain. While the results are direct
consequences of the assumption and the equations above, it
also points out the difficulty in interpreting the co-occurrence
signal without prior knowledge of the network (which we
have in our illustration, Fig. 3b). Indeed, the sole examination
of the co-occurrence signal would not allow us to determine
whether the interactions T-V and C-V are direct but weak, or
indirect.

Conclusion
Indirect interactions can generate non-random associations
that can be interpreted similarly to the ones resulting from

direct interactions. While in some cases, revealing the presence
of an interaction, be it direct or indirect, is enough (e.g. to
predict species distributions in the case of JSDM), this argu-
ment constitutes a major obstacle to the accurate inference of
complex networks based on co-occurrence data alone. Also,
because it is rarely obvious whether a particular association is
direct or indirect from co-occurrence studies, such interactions
could be misinterpreted. To further confound us, species may
modify their interactions solely in the presence of another par-
ticular species. Studies on invasive species are rich in examples
of this particularity of nature (Zavaleta et al., 2001, for a
review). That being said, graphical models (Popovic et al.,
2019) may be an interesting starting point to approach this
problem because they were shown to be efficient in capturing
direct association among species. A graphical model is a prob-
abilistic model that uses a graph to express the conditional
dependencies between different variables. Note that the associ-
ations measured by Popovic et al. (2019) are not, and have
never been considered, interactions.

SAMPLING IS A KEY TO MAKING CORRECT

INFERENCE

In this section, we focus on the role played by different char-
acteristics of the sampling design in the inference of species
interactions from presence–absence data. To assess whether a
co-occurrence is not spurious, it is important to sample
enough, to sample properly and to integrate the metadata

Figure 3 Significant spatial associations can emerge from indirect

interactions. Three co-occurrence signals quantifying the association

between species in the food chain and the resource species are computed for

an increasing association between a resource an its consumer for a linear

chain of four species (b) including a plant species V (the letter ‘V’ was used

for ‘vegetation’), a herbivore H, a carnivore C and a top predator T. The

co-occurrence signals are calculated as follow: P(XV,H)�P(XV) P(XH) (blue

line), P(XV,H)�P(XV) P(XH) (orange line) and P(XV,T)�P(XV) P(XT)

(yellow line) for P(XV) = 0.5, P(XC|XH) = 0.5 and P(XT|XC) = 0.5.
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pertaining to it (e.g. size of the sampling unit, spatial loca-
tion, etc.) Assuming that the data gathered is well sampled
and in large enough quantities, one can then give an interpre-
tation of the estimated co-occurrence. In particular, the
choice of the spatial scale at which to sample and the sam-
pling effort have important impacts on the co-occurrence sig-
nal computed.

Argument 4 – Sampling scale influences measures of co-occurrence

Rationale
It has repeatedly been argued that interactions must be a
major determinant of the broad geographical distribution of
species (Holt & Barfield, 2009; Benning et al., 2019), but also
that, as a local process (acting at the individual scale), their
impact may not be discernible at coarser spatial scales (Pear-
son & Dawson, 2003; Russell et al., 2006; McGill, 2010).
While the problem of sampling scale in co-occurrence studies
has been raised early in the literature (Michael, 1920), bio-
geographers still investigate this technical but central topic
(Ara�ujo & Rozenfeld, 2014; Thuiller et al., 2015; Belmaker

et al., 2015; Bar-Massada et al., 2018). For instance using sim-
ulations, Ara�ujo & Rozenfeld (2014) demonstrated that while
negative interactions quickly vanish as the spatial extent of
sampling unit increases, the imprint of positive interactions
scales up. Such findings emphasise that sampling resolution
needs to be carefully chosen so that the true underlying co-oc-
currence signal can be extracted from the data. From a math-
ematical standpoint, we show in the SI that this argument is
general and that it is related to Argument 1 as is shown in
‘The problem of abiotic factors’.
To illustrate this aspect of the sampling design, we consid-

ered two independent species A and B, that either poorly
overlap (Fig. 4a) or strongly overlap (Fig. 4b). For these two
scenarios, we simulated sampling and then computed co-oc-
currence signal along the gradient for a moving window that
increases in size (see section ‘Simulation’ in the SI for more
details). What is striking about the results obtained is that for
two negatively associated species (Fig. 4a and c), a sampling
area that encompasses most (but not all) of the distributional
range of both species tends to overemphasise the negative
association between the species. Conversely, when two species

Figure 4 Co-occurrence signal and sampling scale. Top panels describe the occurrence probabilities along an environmental gradient of the independent

species A and B in two contrasting scenarios. In (a) species occur in different abiotic condition whereas in (b) they share very similar environmental

requirements. The corresponding bottom panels represent co-occurrence signals (measured as P(XA,XB)�P(XA) P(XB), see ‘Simulations’ in SI) along the

environmental gradient using moving windows of different size as the sampling area considered to assess co-occurrence structure. Dotted lines represent the

co-occurrence signal computed over the entire gradient.
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are positively associated (Fig. 4b and d), the co-occurrence
signal varies widely, especially for a sampling area that
includes between roughly 30% and 50% of the distributional
range of both species. Thus, the associations detected highly
depend on the portion of the environmental gradient consid-
ered.

Conclusion
In addition to the crucial importance of sampling resolution
(Ara�ujo & Rozenfeld, 2014; Thuiller et al., 2015; Bar-Massada
et al., 2018), the portion of the environmental gradient sam-
pled should also be carefully examined to avoid erroneous
conclusions (Bar-Massada & Belmaker, 2017). To infer eco-
logical interactions from co-occurrence data, the full distribu-
tional range of both species needs to be considered. In more
colloquial terms, there are no free lunches when assessing co-
occurrence through observational data.

Argument 5 – Appropriate statistical inference requires a very large

sample size

Rationale
Species co-occurrence is a relatively rare phenomenon to docu-
ment. To contextualise, it is already challenging to gather a
large enough number of samples to estimate how a single spe-
cies relates to the environment. Although there is no specific
sample size prescription for species distribution models, study-
ing model significance (e.g. through the use of confidence inter-
vals), we generally have a good idea of whether a sample was
large enough to obtain reliable results. However, to estimate a
co-occurrence, many samples are required, much more than
what is typically used to measure co-occurrence structure.

How many samples is enough samples?
Let’s consider a simple situation with two relatively common
species. If we assume that species A occurs in 40% (P
(XA) = 0.4) of samples and species B in 60% (P(XB) = 0.6),
probability theory tells us that the null expectation of co-oc-
currence between the two species will be P(XA) 9 P
(XB) = 0.24. Of course, this probability will increase (decrease)
as the co-occurrence signal between the two species also
increases (decreases). However, it is not readily obvious how
many samples would be required to assess whether the associ-
ation between species A and B is different from a null expec-
tation or to evaluate if both species co-occur with a particular
correlation level, say, 0.9, 0.5, �0.5, �0.9. This question can
be approached using the multivariate Bernoulli distribution
(Teugels, 1990) and binomial confidence intervals (DasGupta
et al. (2001) compares different techniques to calculate confi-
dence intervals on binomial data).
The results in Fig. 5 show that in the best case scenario,

over 500 samples are required to reach a 95% confidence
limit. Note that this example is actually conservative because
when the probability of occurrence of each pair of species is
either higher or lower, the number of samples increases to
many thousands of samples.
What is even more worrying is that the results presented in

Fig. 5 assume that the pair of species are solely influencing
each other, a rare case in nature. Species often interact with a

group of other species which will, in most cases, reduce the
probability of co-occurrence on the considered species pair
(see Argument 2) and in turn require that an even larger num-
ber of samples be gathered to efficiently measure the co-occur-
rence between the two species.

Conclusion
The number of samples required to accurately measure co-oc-
currence among species is impractical for most studies. As a
comparison, it is common for studies in ecology focusing on
co-occurrence to have a small sample size compared to what
is discussed in this section. For example of the 294 data sets
gathered in Atmar & Patterson (1995), only four had more
than 100 samples, the largest having 202 samples. This is not
unique to ecology, environmental microbiology (Rocca et al.,
2019) and microbiome research (e.g. Levy & Borenstein, 2013)
suffer from the same problem. Granted, in the last 20 years
larger data sets are becoming increasingly available (see, e.g.
the data sets used by Ovaskainen et al., 2017). That being

Figure 5 Co-occurrence signal and sample size. Estimated confidence

intervals (coloured envelopes) given a specific sample size for a pair of

species presenting different level of correlations. The probability of

occurrence for the two species is 0.4 and 0.6. As such, the probabilities of

co-occurrence varied depending on the correlation levels. The true

probabilities of co-occurrence2 are illustrated by black horizontal lines.

The short vertical black lines in each envelopes highlight the number of

samples required to reach a 95% level of confidence in the estimated co-

occurrence. The calculation of the confidence intervals were performed

using the Wilson scores intervals, which have been shown to be accurate

and robust (DasGupta et al., 2001). To calculate the number of samples

required to reach a 95% level of confidence, we applied a Dunn-Sidak

correction (�Sid�ak, 1967) because two species were used to compute the

co-occurrence probability.
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said, studies with a sample size that meet the requirements
highlighted in this argument are still extremely rare.
The results of this section suggest that no statistical

approach, regardless of its level of sophistication, can be used
to assess spatial associations between species accurately, even
for reasonably large sample size.

THE IMPRINT OF ECOLOGICAL INTERACTIONS ON

CO-OCCURRENCE DATA

In this section we discuss the relationships we should expect
from co-occurrence data based on current ecological theory.
Whether it is from foodweb or coexistence theories, we have
learned that there are different types of interactions with dif-
ferent strengths. In this section, we discuss how what we
know of ecological interactions is expressed in co-occurrence
data.

Argument 6 – Asymmetry of associations between species can blur

co-occurrence signal

Rationale
Different types of interactions do not result in the same co-oc-
currence signal (Ara�ujo & Rozenfeld, 2014). Most co-occur-
rence analyses are, however, derived from the joint species
distribution (as defined above), which is a symmetric measure
of spatial association. Interactions may, however, differ in
magnitude and/or in their effect (positive or negative). As
such, there is no reason why two species should have exactly
the same effect on each other and we should therefore expect
species-specific variation in the co-occurrence signal. Further-
more, some interactions such as predation, herbivory or para-
sitism could even lead to opposing signals, making the
expectation for the joint species distribution indeterminable.
This is noteworthy because these types of interactions have
traditionally been the most studied ones in community ecol-
ogy and are now increasingly inferred from proxies (Morales-
Castilla et al., 2015), including co-occurrence.
This argument is best understood with a decomposition of

the joint probability of occurrence. Using the product rule
(and ignoring the effect of the environment E), we find that
the joint distribution of species A and B can be decomposed
into the product of conditional and marginal probabilities.

P XA;XBð Þ ¼ PðXAjXBÞP XBð Þ ð9Þ
and inversely

P XA;XBð Þ ¼ PðXBjXAÞP XAð Þ: ð10Þ
In the previous equations, the conditional occurrence proba-

bility P(XA|XB) is the measure of the effect of species B on the
occurrence of species A. Unless the marginal probabilities are
exactly the same, the conditional occurrence probabilities
must absolutely differ from each other to equal the joint
occurrence probability. This means that the joint occurrence
probability masks the variability in the strength of associa-
tions between species.
The decomposition presented above may have unexpected

and far-reaching impact. For example strong negative and posi-
tive associations, such as between a predator and a prey, may

cancel each other and result in a joint occurrence probability
not different from the null expectation. A numerical example
best illustrates this point. Let’s consider a predator A with mar-
ginal occurrence P(XA) = 0.2 and a prey with marginal occur-
rence P(XB) = 0.5. We know from probability theory that their
random expectation is P(XA) 9 P(XB) = 0.1. Let us further
assume that their realisation is P(XA,XB) = 0.15, so slightly
above the expectation. Using these values and eqns 9 and 10,
we can calculate the probability of finding the predator given
the presence of the prey P(XA = 1|XB = 1) = 0.3 or its absence P
(XA = 1|XB = 0) = 0.167. This result states that it is almost twice
as probable for a predator and a prey to be found together then
separated. Conversely, using the same approach, we find the
conditional occurrence of the prey in the predator’s absence to
be P(XB = 1|XA = 0) = 0.5625, which is more than two times
larger than in the presence of the predator, P(XB = 1|XA = 1) =
0.25. This simplistic example shows how variable the condi-
tional probabilities can be and how they can have opposite
effects, even if the joint occurrence is not much different from
the null expectation.

Conclusion
Analysis of joint distribution of presence–absence data is not
appropriate to assess interactions because not all asymmetric
interactions can be identified. This particularity of co-occur-
rence data may lead to biased interpretation of interactions
towards symmetric interactions. In this respect, conditional
probabilities are more relevant to document variance in asso-
ciation strength as well as asymmetric associations. There are
four conditional probabilities associated with a pair of co-oc-
curring species and their comparison reveals the direction and
strength of effects of one species on another. While condi-
tional probabilities are very promising and could be extended
to an entire network using Bayesian networks (Staniczenko
et al., 2017), they may be challenging to solve, especially when
cycles are present in the network.

Argument 7 – Coexistence theory predicts that strong interactions

may lead to exclusion before leaving a significant signal

Rationale
In a competition system, stable coexistence, whether it is at
the local or regional scale, requires interspecific interactions to
be weaker than intraspecific interactions (Chesson, 2000). The
weaker competitor tends to get excluded when interaction
strength increases. This narrows down the range where inter-
actions can actually be detected using co-occurrence data: if
interactions are too weak, the imprint left in co-occurrence
data may be undetectable, but if interactions are too strong it
may prevent coexistence from happening.
This assertion can be explored using a multi-species adap-

tation of the Levins (1969) metapopulation model. Such a
model was presented by Hanski (1983) to illustrate the patch
dynamics between a strong (species A) and a weak (species
B) competitor as well as to quantify the proportion of
patches occupied solely by either or both of the two species.
Using this model, we can vary colonisation competition (cor-
responding to pre-emptive competition) or extinction compe-
tition (corresponding to competitive exclusion) (Gravel &
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Massol, 2020). In doing so, we can investigate the propor-
tion of patches where species co-occurrence vary while inter-
action strength increases. Intuitively, the stronger pre-
emptive competition and competitive exclusion are, the smal-
ler the co-occurrence will be relative to marginal occurrence
(species will avoid each other). This is indeed what the
model predicts. In addition, it also shows that marginal
occurrences of the weak competitor rapidly decline when the
interaction strength increases, resulting in very small absolute
co-occurrence (Fig. 6). Given Argument 5, based on this
result, we would need a very large sample size to document
such rare phenomena. As such, it is unlikely that spatial
repulsion may be detected when interaction strength is
strong.

Conclusion
Strong negative interspecific interactions are incompatible
with coexistence. Species may be excluded by competition
before the interaction signal can be captured in co-occurrence
data. In other words, a species absent regionally cannot gener-
ate any interaction signal because it will never be sampled.
Obviously, the degree of spatial association between pairs of
species cannot be measured following competitive exclusion –
a big limitation of any co-occurrence analysis since the strong
interactions most likely to impact distribution cannot be mea-
sured.
This argument could also be made for predator–prey inter-

actions in space, but it may not apply to all types of interac-
tions, if not opposite for positive interactions (see Gravel &
Massol, 2019), it nonetheless leads to the paradox that the

strong interactions we want to document with co-occurrence
may be impossible to measure.

CONCLUDING REMARKS

The seven arguments we present paint a rather grim picture of
the problems related to the inference of interactions from co-
occurrence data. There are two broad conclusions to be
drawn from them. First, the various layers of complexity
inherent to ecological systems (e.g. environmental variability,
diversity of biotic interactions, etc.) blur the link between
interactions and co-occurrence. This is not even accounting
for other more specific aspects of ecological systems. For
example it is inherently challenging to measure interactions
among rare or transient species, regardless of the approach
used (Calatayud et al.,2020). Similarly, particular species may
interact only in specific situations, making their assessment
difficult because the context influencing these interactions may
be difficult to evaluate. Also, most co-occurrence analysis con-
siders species distributions to be at equilibrium, which could
be dynamic (e.g. metapopulation) or not, a constraining
assumption especially in the context of environmental changes
(e.g. climate change). Second, because the relationship
between interactions and co-occurrence is rarely clear, there
are several technical and theoretical challenges to infer ecolog-
ical interactions from co-occurrence data that still remain to
be tackled.
One aspect of ecological interactions that was not discussed

in this paper was the importance of temporal variations and
its impact on species and their interactions. Accounting for

Figure 6 Co-occurrence signal and interaction strength in a metacommunity model (see Gravel & Massol (2019) for model specification). Competition for

space between two species in a metacommunity impact regional occurrence (a) and co-occurrence (b). Increasing interaction strength reduces the occurrence

of both species, up to the point where the weak competitor (species B, blue) is regionally extinct and the strong competitor (species A, orange) reaches its

regional capacity. The strength of co-occurrence relative to the random expectation increases with interaction strength, but is hardly detectable because of a

coincident reduction in the frequency of co-occurrence.
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time when assessing ecological interactions is undoubtedly
important and has potentially far-reaching consequences. For
example hibernation, migration and phenology are all tempo-
ral drivers of change for ecological interactions. However,
assessing interactions from temporal co-occurrence raises a
number of additional issues that are outside the scope of this
paper.
Independently and together, the arguments we developed

illustrate the diversity of those challenges (Box 1). Even if sta-
tistical, sampling or theoretical solutions can be found for
some, it is difficult to contemplate a solution that would solve
all problems raised, while still using presence–absence data.
The minimal amount of information these data carry is indeed
at the core of most of the challenges we pointed out in this
study. Even JSDMs, which have been seen by some as an
appealing new modelling framework to efficiently study eco-
logical interactions, are not able to tackle most of the argu-
ments we presented above. The correlation matrix (estimated
from JSDMs) describing the association among pairs of spe-
cies, now often used as illustration to represent species associ-
ation, is likely what triggered the interest of using JSDMs to
infer species interactions. Using such a representation, it is
extremely tempting to make the intellectual jump to infer eco-
logical interactions. In this respect, we advocate that such rep-
resentation should never be used when the underlying data
used to construct the model is presence–absence data.
Our perspective of the problems related to co-occurrences

and its use to study interactions has far-reaching implica-
tions for some historical debates in community ecology.
Among others, it suggests the importance of revisiting the
long-standing debates on null models initiated by Diamond
(1975) and Connor & Simberloff (1979). The arguments we
raised have implications for the ability to detect significant
signals with null models. Scale and sampling effort problems
have been debated for a while in this ‘null model war’. Yet,
the other arguments also need considerations. For example
even the most recent developments to analyse co-occurrence
data using null models (e.g. D’Amen et al., 2018) still
assume species influence each other with the same level of
intensity. More fundamentally, all the arguments we present
show that the observation of spatial associations (or the lack
thereof) may be impossible to accurately assess and interpret.
We do not suggest here that the whole field pertaining to
null models should be discarded. Rather, researchers should
be more critical of the limits of their tools when interpreting
their results.
Presence–absence data undoubtedly remain central to ecol-

ogy and ecologists must certainly keep collecting them in
order to broaden our knowledge on species distributions and
our understanding of the factors that determine the presence
of a specific community in a particular area. But it is also cru-
cial to identify what can be inferred from such data and what
cannot. Some avenues deserve to be explored bearing that in
mind. A conceptually simple but technically challenging solu-
tion would be to derive interactions from abundance (count)
data instead of presence–absence data. In addition to showing
where a species occur, abundance data also carry more infor-
mation that could be used to make more refined inferences on
why a species occur at a specific location, including

demographical processes, fine spatial variation, etc. All of this
additional information cannot be gathered with presence–ab-
sence data. From a modelling perspective, tools exist that can
be used to assess relationships among species using abundance
data and infer interactions (Faisal et al., 2010; Poisot et al.,
2015; Popovic et al., 2019). From an empirical perspective, a
few studies have used different ways to infer interactions from
abundance (or plant cover) data both in ecology (le Roux
et al., 2013) and microbiology (Levy & Borenstein, 2013).
Hopefully, using ecological data carrying more information
than presence–absence data (such as abundance data) would
provide reliable proxies for biotic interactions.
Another direction worth investigating is to study interac-

tions through the eyeglass of conditional probabilities.
Through this approach, we can get a much more direct inter-
pretation of how a species reacts in the presence of other spe-
cies by being more mathematically explicit about how species
relate to each other. Occurrence probabilities could for
instance be conditional on the presence of another species and
on the environment, avoiding the problems associated with
Argument 1 and Argument 4. Conditional probabilities are
not symmetrical by default, avoiding Argument 6. It may,
however, be difficult to tease apart indirect interactions (Argu-
ment 3) and the signal will still vanish when there is a high
number of interactions (Argument 2). As a result, networks of
conditional probabilities may still require a prohibitive sam-
pling intensity (Argument 5). From a statistical perspective,
Bayesian networks and Markov networks offer appealing ave-
nues to investigate. There are, however, several technical chal-
lenges that will need to be solved before these could be used.
Among them, the presence of cycles (species A affect B and
vice-versa) is a fundamental problem, large sample size cannot
be avoided and some prior knowledge of interactions is also
required.
Yet another way to study species interactions is with mecha-

nistic models where the known (or hypothesised) mechanisms
of interactions are explicitly accounted for. By testing how
close these mechanistic models represent data on species asso-
ciations, we can then infer the underlying processes structur-
ing species. Mechanistic models such as the general
metacommunity model of Hanski (1983) for competition and
its revision for all types of interactions (Gravel & Massol,
2020) could be used to further understand species interaction.
However, these models are very data-hungry and therefore
difficult to apply in practice. Our intuition is that working
with dynamic data (e.g. for colonisation and extinctions) may
avoid some of the problems we raised since in this situation,
we are closer to the processes of assembly and not relying on
equilibrium assumptions. Cirtwill & Stouffer (2016) proposed
an avenue worth further investigation using Simberloff’s clas-
sic defaunation experiment.
Experiments represent one avenue that needs to be further

explored to understand how biotic interactions impact distri-
bution. Although they are often time consuming and costly,
they can increase our knowledge on interactions while
remaining in the world of co-occurrences. As an example,
Brazeau & Schamp (2019) have recently studied experimen-
tally the link between competition and negative co-occur-
rence for flowering plants. Similarly, Kopelke et al. (2017)
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gathered a large data set directly recording the interaction
between willow tree species and sawflies, a group of parasites
feeding on willow leaves. These studies are particularly inter-
esting because they focus explicitly on interactions. A way
forward would be to pursue the development of modelling
approaches that can make full use of these data sets but also
of theoretical ideas that can advance our understanding of
ecological interaction.
Early on ecologists recognised there is a large amount of

unexplored information in co-occurrence data. Powerful new
statistical tools are becoming available that allow ecologists to
gain new insights from co-occurrence data and efforts should
continue in that way. That said, although very tempting at
first, with our current knowledge, interpreting significant co-
occurrence signals between species as evidence of ecological
interactions should be avoided.
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