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Abstract

Integral projection models (IPMs) are extremely flexible tools for ecological

and evolutionary inference. IPMs track the distribution of phenotype in

populations through time, using functions describing phenotype-dependent

development, inheritance, survival and fecundity. For evolutionary infer-

ence, two important features of any model are the ability to (i) characterize

relationships among traits (including values of the same traits across ages)

within individuals, and (ii) characterize similarity between individuals and

their descendants. In IPM analyses, the former depends on regressions of

observed trait values at each age on values at the previous age (develop-

ment functions), and the latter on regressions of offspring values at birth on

parent values as adults (inheritance functions). We show analytically that

development functions, characterized this way, will typically underestimate

covariances of trait values across ages, due to compounding of regression to

the mean across projection steps. Similarly, we show that inheritance, char-

acterized this way, is inconsistent with a modern understanding of inheri-

tance, and underestimates the degree to which relatives are phenotypically

similar. Additionally, we show that the use of a constant biometric inheri-

tance function, particularly with a constant intercept, is incompatible with

evolution. Consequently, current implementations of IPMs will predict little

or no phenotypic evolution, purely as artefacts of their construction. We

present alternative approaches to constructing development and inheritance

functions, based on a quantitative genetic approach, and show analytically

and through an empirical example on a population of bighorn sheep how

they can potentially recover patterns that are critical to evolutionary

inference.

Introduction

Evolutionary and ecological dynamics converge at the

scale of generation-to-generation change in populations

(Pelletier et al., 2009; Coulson et al., 2010). When traits

cause fitness variation, the distributions of those traits,

weighted by fitness, necessarily change within

generations (Godfrey-Smith, 2007). If differences

among individuals have a genetic basis, then genetic

changes will be concomitant with phenotypic changes.

Such genetic changes are the basis for the transmission

of within-generation change due to selection, to genetic

change between populations, that is, evolution (Lewon-

tin, 1970; Endler, 1986). The fundamental nature of

this relationship between phenotypic change due to

selection, and associated genetic and thus evolutionary

change has motivated the development of various

expressions relating selection to genetic variation and

evolution in quantitative terms (Lush, 1937; Robertson
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1966, 1968; Lande, 1979; Lande & Arnold, 1983;

Morrissey 2014, 2015). Important recent advances in

population demography, particularly the introduction

(Easterling et al., 2000) and popularization (Childs et al.,

2003; Ellner & Rees, 2006; Coulson et al., 2010; Ozgul

et al., 2010; Coulson, 2012; Merow et al., 2014) of inte-

gral projection models (IPMs), can potentially allow the

construction of very flexible models of changes in phe-

notype, and of its associated demographic implications

(Coulson et al., 2010).

IPMs are structured population models used to study

the dynamic of populations when individuals’ vital

rates (e.g. survival, growth, reproduction) depend on

one or more continuous state variables (e.g. mass). In

principle, these model structures track the distribution

of individual values of the state variables through time.

To achieve this, IPMs make population projections from

regression models that define the underlying vital rates

as a function of the state variables. Four core sets of

functions for vital rates have been defined, termed fun-

damental functions or fundamental processes (Coulson

et al., 2010): (i) survival, (ii) fertility, (iii) ontogenetic

development of focal trait conditional on surviving (de-

velopment functions) and (iv) distribution of offspring

trait as a function of parental trait (inheritance func-

tions). In principle, the inheritance functions allow

IPMs to be used to make evolutionary inference, that is

inference of evolutionary trajectories and parameters

relevant to evolutionary processes, such as selection

and genetic variation, particularly including the estima-

tion of biometric heritabilities (Coulson et al., 2010;

Schindler et al., 2013; Traill et al., 2014; Bassar et al.,

2016). As discussed by Coulson et al. (2010), these four

processes underlie the high flexibility of IPMs and their

ability to link different aspects of population ecology,

evolutionary biology and life history. The fundamental

processes are combined to compute a function called

the kernel, which represents all possible transitions

between state values through time (e.g. the probability

density of transitions from size x1 at time t�1 to size x2
at time t). The product of the kernel by the number of

individuals at time t�1 is integrated over all possible

sizes to obtain the number of individuals of size x2 at

time t. In general, the numerical implementation of

IPMs involves the construction of an iteration matrix to

solve the integral. Empirical examples include the study

of monocarpic plant species (Childs et al., 2003; Ellner

& Rees, 2006; Rees et al., 2006), Soay (Ovis aries, Ozgul

et al., 2009; Childs et al., 2011) and bighorn (Ovis

canadensis, Traill et al., 2014) sheep, yellow-bellied mar-

mots (Marmota flaviventris, Ozgul et al., 2010), and

Trinidadian guppies (Poecilia reticulata, Bassar et al.,

2016).

A key aspect of the distribution of phenotypes is how

traits covary at the level of individuals. Genetic and

phenotypic covariances among traits are key determi-

nants of evolution (Lande, 1979). In the context of

IPMs, which often consider single traits (e.g. mass),

age-specific values of a given trait can be thought of as

separate, age-specific traits, the covariances among

which are key determinants of evolutionary processes.

In fact, in these models, when selection acts only on

juveniles, evolution can only occur if there is covari-

ance between trait values at juvenile ages and some

aspect (genetic or phenotypic) of the state of individuals

at the stage when they reproduce. Such mechanics dif-

fer from the classic quantitative genetic approach,

where a change in phenotype is transmitted to future

generations if there is a change in breeding values. In

most IPMs as parameterized to date (e.g. Childs et al.,

2003; Ellner & Rees, 2006; Coulson et al., 2010; Ozgul

et al., 2010), recovering covariance across ages depends

on correctly estimating regressions of observed trait val-

ues at each age on trait values at the previous age. In

practice, as it is well known, such regressions will typi-

cally be underestimated due to regression to the mean

(Campbell & Kenny, 1999; Barnett et al., 2005; Kelly &

Price, 2005). This statistical phenomenon – unusually

extreme measurements being followed by measure-

ments that are closer to the mean – is a manifestation

of measurement error. Regression to the mean there-

fore occurs if phenotypic measurements of predictor

variables imperfectly reflect relevant biological quanti-

ties. This problem has begun to be investigated in the

context of IPMs (Chevin, 2015), and it is likely to be

very general. The development functions used so far in

IPMs estimate size at any age as an accumulation of

growth from birth until that age, which implies that

size at age a is estimated through a series of regressions

in which an increasing measurement error in the pre-

dictor is not accounted for. We note that IPMs do not

imply the occurrence of regression to the mean. The

issues that we discuss in this article are related to the

statistical models that are typically – but not necessarily

– used in IPMs.

In age-size-structured IPMs, size-dependent transition

functions of the fundamental demographic processes

are used to project size distribution from one age to the

next, and across generations. The inheritance function

has been defined as an association between the pheno-

type of the offspring as newborns or juveniles and that

of the parents at the time the offspring was produced

(Coulson et al., 2010; Schindler et al., 2013; Traill et al.,

2014; Bassar et al., 2016). Essentially, it is a cross-age

parent–offspring regression, which is a peculiar measure

of resemblance due to inheritance. Outside of the IPM

framework, the concept of biometric heritability – the

slope of the offspring trait regressed on the mid-parent’s

value (Jacquard, 1983) – is defined by comparing par-

ent and offspring at the same age (Galton, 1886). In

fact, no theory exists for the concept of cross-age heri-

tability as used in IPMs. Body size, commonly the focal

trait in IPMs, is typically a dynamic trait (a trait that

varies over the development) and therefore its value at
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a certain age is the result of the accumulation of

growth until that age, causing differences among indi-

viduals to accumulate over the ontogeny due to envi-

ronmental and genetic variation in size trajectories

(Chevin, 2015). As genes, not phenotypes resulting

from development, are inherited, parental phenotype as

an adult is an imperfect predictor of the parental

genetic contribution to the offspring phenotype. As a

consequence of phenotype being used as a predictor,

regression to the mean occurs and results in the under-

estimation of resemblance between parents and their

offspring, and therefore of the genetic contribution to

phenotypic change (Chevin, 2015).

Here we construct simple but realistic theoretical

models of development and inheritance of a quantita-

tive phenotypic trait. For both development and inheri-

tance, we also construct corresponding models to the

functions normally implemented in IPMs. By comparing

these two sets of models, we investigate how the devel-

opment and inheritance functions typically adopted to

date in IPMs use data on size-at-age of relatives, and

how well they recover across-age and across-generation

population structure in continuous traits. Aspects of the

distribution of traits through time, other than over sin-

gle iteration steps, in size-dependent development and

inheritance functions, are normally not used to parame-

terize IPMs. Also, IPMs are typically iterated so that

once the population structure at time t + 1 is generated,

the state of the population at time t is discarded. Conse-

quently, although IPMs’ most important feature is track-

ing the distribution of phenotype through time, they do

not output aspects of population structure (e.g. correla-

tions in size within individuals across ages) that allow

their performance to be checked. This is a critical point

because whenever aspects of the distribution of traits

across time are of interest for any inference, particularly

evolutionary inference, correlations of individual trait

values across ages and of trait values of relatives across

generations, must be adequately reflected. Path analysis

(McArdle & McDonald, 1984) can be very useful in

studying such correlations. In fact, the structure of both

the development functions – with their autoregressive

structure – and of the biometric inheritance – with asso-

ciations both among different generations and among

different ages – can be conveniently illustrated by a path

diagram representing the causal relationships among a

set of variables. Also, the path (or tracing) rules are

easily applied to obtain the correlations among variables

that are not directly associated (e.g. mass at age 1 and

mass at age 3). As such, we use path analysis to gener-

ate analytical expressions that isolate growth and inheri-

tance, providing insight into the degree to which

models of these processes typically used to date recover

the structure of populations.

We demonstrate that current parameterizations of

IPMs generally recover only a small fraction of the true

underlying similarity within individuals across ages

(section Development), and a small fraction of the true

underlying similarity between relatives (section Inheri-

tance). These shortcomings have severe consequences

for evolutionary inference with IPMs. We then provide

an empirical example of a quantitative genetic analysis

of developmental trajectories in a pedigreed wild popu-

lation of bighorn sheep using a random regression ani-

mal model of body mass. We compare the random

regression analysis, which not only should be robust to

regression to the mean, but also uses a model of inheri-

tance based on established principles of how biometric

relationships among kin arise from genetic variation

(Fisher, 1918; Wright, 1921), to the inheritance func-

tion based on the cross-age parent–offspring regression

and standard regression methods for growth functions

normally implemented into IPMs. We show a large dif-

ference between the two parameterizations in the abil-

ity to capture similarity within individuals across ages,

which results in standard regression methods normally

used in IPMs not capturing the across-age structure in

growth. Similar conclusions are reached across genera-

tions, where IPMs miss most similarity among relatives,

corresponding to a failure of the typical IPM inheri-

tance function to predict evolution. We conclude by

discussing the results from the theoretical and empirical

sections and potential solutions that may prove useful

in fully realizing the potential of IPMs.

Development

Regression to the mean is particularly relevant to IPMs

due to how size-dependent growth coefficients are typi-

cally – although not necessarily – estimated. Transition

rates between size classes for surviving individuals are

modelled by regressing observed size at age a + 1 on

observed size at age a, observed size being therefore a

predictor. Either linear models (e.g. Childs et al., 2003;

Coulson et al., 2010), or extensions of such models,

including generalized linear or additive (mixed) models

and nonlinear models (e.g. Ozgul et al., 2010; Rees

et al., 2014; Traill et al., 2014) have been used for this

purpose. All these methods assume that predictors are

measured without error. When this assumption is vio-

lated, downwardly biased estimates are obtained (for a

review on problems and proposed models to deal with

measurement error see Thompson & Carter, 2007).

Measurements of most traits, including size, will virtu-

ally always be made with nontrivial error, for two rea-

sons. First, limitations in the measurement process

caused by different measuring conditions (e.g. different

levels of stomach fill when measuring the mass of a

sheep), or limitations of instruments used for measure-

ment, tend to occur. Second, size, like most other vari-

ables of ecological interest, is an abstract concept and

therefore is not directly measurable. As such, proxy

variables that do not perfectly represent size are mea-

sured instead, such as mass or some skeletal measure.
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The complexity of size is such that the covariation

between any proxy at time t and t + 1 is also deter-

mined by the other components of size, which are

highly correlated with each other. Importantly, the

mechanics underlying IPMs imply neither measurement

error nor regression to the mean. Rather, the applica-

tion of standard regression methods that do not account

for measurement error within an autoregressive struc-

ture on size (subsequent sizes being used as predictors)

promotes the occurrence of regression to the mean due

to measurement error.

As the measurement error that causes regression to

the mean is random rather than systematic, this prob-

lem can be modelled by thinking of true size, the trait

we want to measure, as a latent variable, z, that cannot

be measured (e.g. McArdle, 2009; Little, 2013, p. 43).

In such a scenario, instead of the true values z, a proxy,

the trait we actually measure, x, is recorded, which dif-

fers from z by a measurement error, r2� , and is related

to it by a repeatability, r2. x can, therefore, be written

as x ¼ z þ r2� . In Fig. 1a, we illustrate such model of the

ontogenetic development of size, which we named la-

tent true size model, using a path diagram. In this dia-

gram, true size at age 1, z1, determines true size at age

2, z2. z2 is then a predictor of true size at age 3, z3, and

so on until size at age n, zn, is predicted. In contrast,

the kinds of regression analyses implemented to date in

IPMs (e.g. Childs et al., 2003; Coulson et al., 2010;

Ozgul et al., 2010; Rees et al., 2014; Traill et al., 2014)

assume that true size z is being measured when in fact

the measured variable is x. This model, which we ter-

med observed size model, is illustrated in Fig. 1b. The

autoregressive structure in this model is very similar to

that in Fig. 1a, but is built on observed sizes rather

than true ones. We use the theoretical models in Fig. 1

to illustrate the consequences of this conceptual mis-

match and to inspect how regression to the mean

affects inference about development. We show that the

correlations, and therefore the regression coefficients,

estimated using IPMs do not correspond to the true

latent ones. We then derive a generic analytical expres-

sion for how much correlation an IPM can recover

given a certain repeatability and number of projection

steps (number of IPM iterations).

If we consider linear size-dependent growth func-

tions, we can express the true biometric relationships

(i.e. true theoretical expressions) among traits z (e.g.

size at different ages), as well as the relationships cap-

tured by standard regression methods typically used in

IPMs to describe development, using the principles of

path analysis (McArdle & McDonald, 1984). Developed

by Wright (1921, 1934) for estimating causal path coef-

ficients, path analysis mathematically decomposes cor-

relations (or covariances) among the variables in a path

diagram. For convenience, in the path diagrams that

we show we assume that all variables are standardized

(mean-centred and variance of 1). In such

circumstances, the expected correlation between two

variables is the product of the standardized path coeffi-

cients that link them. Some notational details are worth

summarizing: r denotes several aspects of true covaria-

tion (covariance in growth among ages), whereas r2

represents true variances. Variances estimated by IPMs

are denoted by s2. As the models in Fig. 1 are antede-

pendence models (or autoregressive, as the response

variable depends on itself at a previous time), r2g in

Fig. 1a and s2g in Fig. 1b correspond to variances in

growth associated with the regressions of true size on

true size at a previous time and observed size on

observed size at a previous time, respectively. Finally,

the path coefficients b correspond to regressions of size

on size and r2 to the square of the regression coefficient

of observed size at age a, xa, on true size at the same

age, za. Following the principles of path analysis, we

used a variance–covariance matrix with the variances

in growth, r2ga , and errors associated with observed

sizes, r2�a , for each age a, and a matrix with path coef-

ficients (bza and ra) matching Fig. 1a to obtain a vari-

ance–covariance matrix for sizes at different ages

(Appendix S1). From this matrix, we then extracted the

covariances among ages for both true and observed

sizes (Table B1 in Appendix S2). As an example,

according to the path rules, the correlation and covari-

ance in true size between ages 1 and 3 are given by

bz1 � bz2 and r2g1 � bz1 � bz2, respectively. Analogous

quantities were obtained similarly for IPMs (Table B2

in Appendix S2). As regressions of observed size on

observed size, bxa , are estimated from the data (rather

than implied), these quantities are necessarily recov-

ered correctly, and therefore, the bxa estimated in IPMs

(Fig. 1b) are equivalent to the analogous quantities in

Fig. 1a. In contrast, variances in growth estimated with

observed sizes, s2ga , do not correspond to variances in

growth estimated with true latent sizes, r2g a, nor to the

measurement error associated with observed sizes, r2� a.
Consequently, as these quantities are crucial to estimate

covariances in size among ages, the across-age distribu-

tion of phenotype that occurs in a typically constructed

IPM does not generally recover the across-age distribu-

tion of either a measured aspect of phenotype (e.g. cor-

relations in the x variable across ages) or of an

underlying quantity (e.g. correlations in the z variable

across ages). An across-age distribution of phenotype,

which includes correlations among ages, is not typically

tracked by an IPM (e.g. Childs et al., 2003; Ellner &

Rees, 2006; Coulson et al., 2010; Ozgul et al., 2010).

Yet, an IPM’s utility for any ecological and evolutionary

inference depends on its ability to track this distribution

through time. In a typical implementation, the distribu-

tion of phenotype at age a�1 is discarded once the dis-

tribution at age a is generated, so such correlations

cannot easily be outputted and checked against data.

As such, we use path analysis to mimic basic IPM

mechanics and to extract the across-age dynamics that
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are not otherwise easily tracked. In contrast, an IPM

can easily be interrogated for the distribution of pheno-

type at any given time. These distributions generally

closely match data (Ozgul et al., 2010; Childs et al.,

2011, also see fig3(a) in Chevin, 2015 for a simulation

example).

For tractability, we demonstrate that IPMs do not in

general recover the across-age structure of phenotype

using a simplified case of the path diagram in Fig. 1a as

the true model. Specifically, we focus on a static trait,

as it renders the basic principles more clearly without

loss of generality. We assume that all size-dependent

growth coefficients are one (bza ¼ 1; 8a), that the vari-

ance in true growth at age one – which also corre-

sponds to the variance in true size at age one – is one

(r2g1 ¼ 1) and that the subsequent variances are zero

(r2ga ¼ 0; 8a[1). Finally, all repeatabilities, ra, and

measurement errors, r2�a , take the same value, r and

1� r2, respectively. Applying the path rules and these

assumptions results in the particular case of all true

phenotypic variances and covariances being 1 and vari-

ances and covariances for phenotypic observed size

being 1 and r2, respectively (see Appendix S1 for

details). Standard regression methods typically used in

IPMs underestimate regressions for true growth in any

instance where r < 1, by a factor of r2. Whenever true

and observed sizes differ, which is true for virtually

every attempt to measure size, instead of 1 (value set

for all bza), bxa take the value r2 for any consecutive

pair of ages (in both Fig. 1a and b). As mentioned

before, covariances in size across ages are in general

not reported when building an IPM. However, the

implied covariances can be calculated using path analy-

sis (see Appendix S1 for the general case and

Appendix S1 for this simplified example). As according

to the path rules of standardized variables correlations

between two variables correspond to the product of the

path coefficients linking them, in this example correla-

tions in size among two ages will be r2 to a power

equivalent to the number of links between them. As

such, as r < 1, these correlations will be underesti-

mated. Variances in size are well recovered in IPMs

because these quantities are directly estimated from the

data. Therefore, in this example, sg1 , which also corre-

sponds to variance in size at age one, corresponds to

one, resulting in covariances in size implied by the

growth functions normally implemented in IPMs being

given by

covIPMðxi; xjÞ ¼ ðr2ÞDt; (1)

where Dt is the number of projection steps (or path

coefficients) connecting ages i and j (j�i).

(a)

(b)

Fig. 1. Path diagrams illustrating the ontogenetic development of size. (a) Latent true size model; (b) observed size model implemented

into IPMs. za and xa are, respectively, the true and observed sizes at age a. ra, linking true and observed sizes, are defined such that

repeatabilities are r2a . In these antedependence models, r2ga and s2g a are exogenous variances in growth for true and observed values,

respectively, except when they refer to a = 1. In this case, r2g1 and s2g 1 also correspond to variances in size. r2�a are exogenous errors

associated with observed sizes. bza and bxa are growth regressions (path coefficients) for true and observed values, respectively. Dashed

lines, as opposed to solid lines, do not belong in the path diagram. Although bxa correspond to the same quantities in both models, the two

models result in covariance structures that are very different (see Appendix S1).
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The standardized conditions set in this simplified

example illuminate how much correlation between

sizes at different ages the standard IPM formulation will

miss. As true correlations (or covariances) in size across

ages were set to one, subtracting the correlation in

eqn (1) to that theoretical value corresponds to the

amount of correlation a standard regression fails to

recover,

missed correlation ¼ 1� r2
� �Dt

: (2)

The theoretical result of eqn (2) shown in Fig. 2

demonstrates that this quantity is far from negligible,

increasing rapidly with the number of projection steps

and decreasing values of r. Many IPM analyses to date

have focused on long-lived organisms. In these systems,

age differences (projection steps) of 5–10 years may

correspond to the gap between juvenile stages, which

are often subject to the strongest viability selection, and

ages of greatest fecundity. Even for traits with high

repeatabilities (e.g. r = 0.9), correlations over such age

differences will be underestimated by more than 60%

(Fig. 2). Ultimately, size is estimated as an accumula-

tion of growth through an autoregressive process that

discards the distribution of size at time t�1 at each iter-

ation (when the distribution at t is obtained). This

results in measurement error at each iteration not being

accounted for in the next, and therefore the effect of

regression to the mean rising with the number of IPM

projection steps. Serious consequences can be expected

for both evolutionary and ecology studies, whenever

differences in individual growth are of interest. Curi-

ously, all else being equal, IPMs with narrower

projection intervals (e.g. monthly, rather than yearly)

will suffer more from regression to the mean than mod-

els constructed with wider projection intervals. Finally,

it is important to note that asserting that the observed

quantities, rather than underlying variables, are the tar-

get of interest in any given IPM application does not

solve the fundamental problem. In any scenario where

the covariance of observed values through time is

caused (in part or in whole) by quantities other than

the observed values themselves (Fig. 1a), a model of

sequential regressions of observed values on one

another (Fig. 1b) will not recover the resulting covari-

ance structure.

Inheritance

The modern understanding of how genes contribute to

similarity among relatives (Fisher 1918, 1930; Wright

1922, 1931) has a very different structure from the

inheritance function typically included in IPMs (e.g.

Coulson et al., 2010; Traill et al., 2014; Bassar et al.,

2016). Fisher and Wright showed how Mendelian

inheritance at many loci influencing a trait generates

the observed biometric relationships among relatives,

including the relationships of a quantitative character

between parents and offspring. Here, we use the basic

mechanics of inheritance of a polygenic trait, which

have well-known relationships to selection and evolu-

tion (Walsh & Lynch, forthcoming), and use it as sim-

ple background to see whether IPM mechanics are

generalizations of these principles. The notion of breed-

ing value, or genetic merit, of an individual is central

to the current theory of the inheritance of quantitative

traits, and has its roots in Fisher’s (1918) and Bulmer’s

(1980) infinitesimal model (see Falconer, 1981; Walsh

& Lynch, forthcoming, Chapter 15). Each parent passes

half of its genes and therefore half of its breeding value

on to the offspring. As such, the expected breeding

value of offspring i, E½BVi�, corresponds to half the sum

of parental breeding values, as follows

E½BVi� ¼ ðBVmi
þ BVfiÞ
2

; (3)

where BVmi
and BVfi are the maternal and paternal

breeding values, respectively. The true breeding value,

BVi, follows a normal distribution,

BVi �NðE½BVi�; r
2
a

2
Þ; (4)

with its expected value as mean and
r2a
2
as variance, cor-

responding to the variance in breeding values in the

absence of inbreeding, conditional on mid-parent

breeding values, resulting from segregation (Bulmer,

1980). The variance in the breeding values divided by

the phenotypic variance is defined as heritability, h2, a

measure of evolutionary potential. The degree of

resemblance between relatives provides the means for
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Fig. 2. Proportion of correlation in size among ages recovered by a

typically built IPM as a function of the square root of the

repeatability (r) and number projection steps (Dt). The true values

were used as reference.
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distinguishing the different sources of phenotypic varia-

tion and therefore for estimating heritabilities and other

quantitative genetic parameters (Falconer, 1981). The

simplest way of doing so is using correlations of close

kin, for example, of parents and their offspring, as h2

corresponds to the slope of the offspring trait regressed

on the mid-parent’s (Lynch & Walsh, 1998, Chapter 7).

In fact, Jacquard (1983) defines the heritability esti-

mated with a parent–offspring regression as a biometric

heritability, as opposed to broad- and narrow-sense

heritabilities, for which the genetic and additive genetic

variances are, respectively, explicitly estimated. Any

genetic architecture, that is broad- and narrow-sense

heritability, determines the biometric relationships

among kin (Lynch & Walsh, 1998, Table 7.2). In IPMs,

heritabilities have been estimated using parent–off-
spring regressions. Specifically, inheritance has been

defined as a regression of the phenotype of the off-

spring as newborns or juveniles on that of the parents

at the time the offspring was produced (Coulson et al.,

2010; Schindler et al., 2013; Traill et al., 2014; Bassar

et al., 2016). In this section, we investigate whether this

cross-age biometric notion of inheritance is compatible

with what is known about trait transmission across

generations.

Inheritance across generations

We start by addressing the consequences of regression

to the mean related to the biometric concept of inheri-

tance when applied across multiple generations. We

define a true model for trait transmission across four

generations of the same age, according to Fisher’s and

Wright’s understanding of trait transmission (Fig. 3a),

and a comparable model reflecting the biometric con-

cept of inheritance typically used in IPMs (Fig. 3b). As

for the development models, we used path diagrams

and path analysis to compare the correlations implied

by both models. In Fig. 3a, breeding values, the under-

lying units that are inherited, are passed on across gen-

erations: from great-grandparents to grandparents, from

grandparents to parents and from these to the offspring.

As each parent passes on half its breeding value to the

next generation, the regression coefficient linking gen-

erations is 1
2
. The variance associated with the breeding

values is 3
4
, which corresponds to 1

2
from the other par-

ent and 1
4
from segregation. h corresponds to correlation

between the breeding values and phenotypic values

(Wright, 1921; Falconer, 1981) and, in a standardized

path analysis, to the corresponding regression coeffi-

cient as well. If observed size is standardized (variance

of 1), then according to the path rules its exogenous

variance corresponds to 1� h2. Finally, if any regres-

sion was to be made between the observed sizes, x, the

coefficient would be half the heritability. There is a

close analogy with the path diagrams in Figs 3a and 1a.

Not only do they share the same structure (sizes at

different generations instead of sizes at different ages),

but other analogies can be taken. For example, as the

regression coefficient of phenotype on breeding values,

the square root of the heritability expresses the reliabil-

ity of the phenotype to represent the underlying genet-

ics, which in Fig. 1a was represented by the square root

of the repeatability. In Fig. 3b, we show a series of par-

ent–offspring regressions based on phenotype, rather

than genetics. The slope of the parent–offspring regres-

sion for a single parent is known to be 1
2
h2, and in a

standardized path analysis, the associated variance is

1� 1
4
h4. Similarly, the path diagram in Fig. 3b relates

to the one in Fig. 1b.

With this single age set-up, we can isolate the regres-

sion to the mean that occurs as a result of a purely bio-

metric approach to the inheritance function. As for the

true regressions, parent–offspring, grandparent–off-
spring, great-grandparent–offspring regressions are

given by 1
2
h2, 1

4
h2, 1

8
h2, respectively (Lynch & Walsh,

1998). The extension for arbitrary ancestral regressions

is given by

bDg ¼ 1

2Dg
h2; (5)

where Dg is number of generations between two rela-

tives. We used path analysis to obtain the analogous

regressions that are implied when applying a biometric

inheritance function repeatedly within an autoregres-

sive process (Fig. 3b). The structure of the path dia-

grams in Figs 1b and 3b are equivalent, and therefore,

the reasoning for obtaining covariances and regressions

for size presented in Appendix S1 also applies in this

case. As such, according to the path rules, IPMs, as usu-

ally parameterized, will estimate these regressions as

bDgIPM ¼ 1

2
h2

� �Dg

; (6)

which does not correspond to eqn (5). As an example,

tracing the regression of grandoffspring size (xO) on

grandparent size (xGP) in this standardized path diagram

involves two paths with coefficient 1
2
h2, resulting in

1
4
ðh2Þ2 instead of the true regression 1

4
h2. Equation (6)

implies that trait transmission between relatives is not

fully recovered when the gap between generations (Dg)
is greater than one. For ancestral regressions, other

than of offspring on parent to be correctly recovered

the heritability of this trait would have to be one,

which tends not to happen in nature for most ecologi-

cally interesting traits. The proportion of the true

regressions recovered by the biometric inheritance

function is given by h2
ðDg�1Þ

, as illustrated in Fig. 4. For

example, if a trait has a heritability of 25%, the grand-

parent–grandoffspring regression will be estimated as
1
4
h4 ¼ 1

64
rather than its true value of 1

4
h2 ¼ 1

16
, which

corresponds to only recovering 25% of the regression.

This proportion drops to 6.25% for great-grandparents

and their offspring.
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Across-age inheritance functions

There is a second mechanism by which regression to

the mean affects inference with the inheritance

function, particularly resulting from its cross-age struc-

ture. It is important to note that although an individ-

ual’s genetic constitution is constant throughout life,

the genetic variants relevant at one life stage need not

affect other life stages. Genetic variants acting late in

life may be latent early in development. Such variants

may be inherited and contribute to similarity among

relatives, even if they contribute neither to covariance

of traits within individuals, through time, nor to covari-

ance of parents, as adults, with their offspring, at

young, or arbitrary, life stages. Consequently, there is

potential for the concept of inheritance applied to date

in IPMs to neglect a major fraction of how genetic vari-

ation can generate similarity among relatives (Hedrick

et al., 2014; Chevin, 2015). Chevin (2015) illustrated

this issue with numerical demonstrations. Here we for-

malize his findings analytically to explore the generality

and the magnitude of his conclusions. We examine

what would happen to two cohorts (parents and off-

spring) with two ontogenetic stages (juvenile, J, and

adult, A, Fig. 5). We choose a simple model with only

two ontogenetic stages, as extending it to include more

age classes would correspond exactly to what was

described for development in the previous section. We

explore two different perspectives of trait transmission

– first using basic quantitative genetic principles and

then a cross-age biometric approach typical of IPMs.

The first path diagram (Fig. 5a) reflects the former,

(a)

(b)

Fig. 3. Path diagrams illustrating the transmission of a quantitative trait across generations of the same age. (a) Model based on the

fundamentals of quantitative genetics; (b) model corresponding to a purely biometric notion of inheritance. BV and x correspond to

breeding values and the observed phenotype, respectively. The exogenous inputs to BVs include contributions from the other parent and

segregation. The subscripts GGP, GP, P and O denote great-grandparent, grandparent, parent and offspring, respectively. h2 corresponds to

the heritability and therefore h and h4 to its square root and square, respectively. Dashed lines, as opposed to solid lines, do not belong in

the path diagram. Although the observed parts of the two models look very similar, they imply different correlation structures among

relatives more than one generation apart (see main text).
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with phenotype being a result of the breeding values,

BV, and the environment, re2. To account for the fact

that different genes may influence different traits or the

same traits across ages, we use different symbols for

breeding values in the juvenile and adult stages. In this

path diagram, parent phenotype as a juvenile determi-

nes parent phenotype as an adult through the regres-

sion coefficient b. We also represent segregation and

mating, through which the offspring receives paternal

breeding values that, together with the environment,

define offspring phenotype as juveniles, OJ . Finally, off-

spring phenotype as juvenile also determines its pheno-

type as an adult, OA. We use the subscripts z, a and e

to distinguish between phenotypic variance, r2, and

covariance, r, and their additive genetic and environ-

mental components, respectively. The diagram in

Fig. 5b illustrates a cross-age phenotypic transmission

between parents and offspring normally used in IPMs

(e.g. Coulson et al., 2010; Traill et al., 2014; Bassar

et al., 2016). In this diagram, parent phenotype as a

juvenile determines parent phenotype as an adult

(through the regression coefficient for development,

bdev), which determines offspring phenotype as a juve-

nile (through the regression coefficient for inheritance,

binh). Finally, growth also occurs in the offspring,

resulting in its adult stage. As before, we consider linear

size-dependent growth functions, and additive genetic

effects on juvenile size and subsequent growth, so that

path analysis can be used to obtain the biometric rela-

tionships among traits (true theoretical expressions), as

well as the relationships captured by the cross-age

inheritance function implemented in IPMs (see

Appendix S1 for details). First, we defined true hypo-

thetical additive genetic and environmental variance–
covariance matrices for growth at each age, as well as

true path coefficients that match the path diagram in

Fig. 5a. Subsequently, we used path analysis to obtain

the true phenotypic variance–covariance matrix for

size, a matrix that quantifies both direct and indirect

effects of size at each age. Finally, the slopes of the

regressions of offspring size on parent size were

obtained analytically from the model, corresponding to

the true parent–offspring regressions for both juveniles,

bOJ ;PJ ¼
1

2

r2aJ
r2z J

¼ 1

2
h2J ; (7)

and adults,

bOA ;PA ¼ 1

2

r2aJb
2 þ 2raJ;A

bþ r2aA
r2z Jb

2 þ 2rzJ;Abþ r2z A
¼ 1

2
h2A: (8)

Note that the numerator and denominator in eqn (8)

are simply reconstructions of the additive genetic and

phenotypic variances in size, respectively, given the

additive genetic and phenotypic variances in juvenile

size, growth to adult size and the covariance between

them. Two other expressions are required, as they are

used in constructing IPMs, namely for the regression of

adult offspring size on juvenile offspring size, or adult

parent size on juvenile parent size,

bOA ;OJ
¼ bPA;PJ ¼ bA;J ¼

r2z Jbþ rzJ;A
r2z J

; (9)

which models the ontogenetic development of size, and

for the regression of juvenile offspring size on adult

parent size,

bOJ ;PA ¼ 1

2

r2aJbþ raJ;A
r2z Jb

2 þ 2rz J;Abþ r2z A
; (10)

which corresponds to the cross-age inheritance function.

As shown in Fig. 5b, typical IPMs adopt bOJ ;PA (binh)

as the inheritance function. We use the path rules to

obtain the covariances among same-age parent and off-

spring that are implied by this quantity, and therefore

to obtain expressions for the same-age parent–offspring
slopes. In practice, we then compare the theoretical

results presented above, in particular the true parent–
offspring regressions in eqns (7) and (8), to those that

occur with the cross-age inheritance function, allowing

us to derive the conditions under which IPMs recover

the population structure of continuous traits between

parents and offspring. According to the path rules, IPM-

based inference for parent–offspring regression at both

juvenile and adult stages, bOJ ;PJ and bOA;PA , respectively,

corresponds to the product of bJ;A (eqn 9) and bOJ ;PA

(eqn 10, see Appendix S1 for details), as follows

1

2
h2ðIPMÞ ¼ bOJ ;PJ ðIPMÞ ¼ bOA;PA ðIPMÞ

¼ 1

2

r2z Jbþ rzJ;A
r2z J

r2aJbþ raJ;A

r2z Jb
2 þ 2rzJ;Abþ r2z A

: (11)

As a result, in a two-stage case, an IPM as typically

built implies the same value of the parent–offspring
regression for both stages, which is not the case for the

true values (eqns 7 and 8). Also, and even more impor-

tantly, the IPM-based inference corresponding to the

expression in eqn (11) does not correspond to the true

values for either age (eqns 7 and 8). Thus, IPMs do

not, in general, recover parent–offspring regressions.

The comparison between IPM-based inference and

true values becomes more straightforward in the simpli-

fied case of no covariances of growth across ontogenetic

stages (additive genetic, raJ;A
, and more generally, phe-

notypic, rzJ;A). In such circumstances, the IPM implies a

parent–offspring regression, for both juveniles and

adults, of

1

2
h2ðIPMÞ ¼ bOJ ;PJ ðIPMÞ ¼ bOA;PA ðIPMÞ ¼

1

2

r2aJb
2

r2z Jb
2 þ r2z A

; (12)

which is always less than the corresponding true val-

ues. This is a best-case scenario for IPMs, as covariances

of growth across ages are in general not modelled when

estimating size transitions in such models. Even in such
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unrealistic conditions, a standard IPM can only recover

the true parent–offspring regressions under very specific

conditions. According to eqn (12), for parent–offspring
regression in juveniles to be fully recovered by a model

using a cross-age biometric inheritance function, the

phenotypic variance in growth, r2z A, must be zero.

When that is not the case, the proportion of regression

recovered decreases with decreasing size-dependent size

regression, b (eqn 7, Fig. 6a). The same condition holds

for the parent–offspring regression in adults (eqn 8,

Fig. 6b). These quite narrow conditions are unlikely to

occur in nature. We obtained similar results for the case

where covariance in growth exists (Appendix S2).

Indeed, although IPMs were developed to model

dynamic traits, the conditions for which they are guar-

anteed to recover parent–offspring regression, particu-

larly the absence of variance in growth, essentially

constrain a dynamic trait to be static.

Parent–offspring regression with a constant
intercept

The preceding analysis shows that regression to the

mean prevents the inheritance function from capturing

most aspects of covariance between individuals and

their descendants. In language typically used to describe

properties of IPMs, a cross-age biometric inheritance

function does not fully capture the most important

ways in which inheritance influences the dynamics of a

population through time. Importantly, however, as

shown above, the biometric inheritance notion does

capture the correct covariance of parents and offspring,

at least of a static trait (or a model with a single age

class). In itself, this may imply that a purely biometric

notion of inheritance can be used, at least in simple

cases, to track some important features of a population.

Nonetheless, the use of the concept of biometric inheri-

tance that is extensively recommended for IPMs (Coul-

son et al., 2010; Coulson, 2012; Rees et al., 2014) does

not correctly employ the concept. This recommendation

is based on two misconceptions about biometric inheri-

tance, both of which lead to failures to characterize

even the simplest aspects of phenotype (e.g. the

dynamic of mean phenotype). The first misconception,

shown above, is the assumption that theory underlying

the biometric relations among kin can be applied to a

nonstatic trait when parents and offspring are of differ-

ent ages. This includes the assumption that iteration of

the purely phenotypic relations of parents and offspring

across multiple generations can recover biometric rela-

tionships among more distant kin, for example arbitrary

ancestral regressions. The second misconception is that

the biometric inheritance concept, and its known rela-

tionships to quantitative genetic parameters (Lynch &

Walsh, 1998, Chapter 7), implies that biometric func-

tions are constant. A constant genetic basis (e.g. an

(a) (b)

Fig. 5. Path diagrams illustrating the transmission of a quantitative trait between parents, P, and offspring, O, with two ontogenic stages,

juvenile, J, and adult, A. (a) Model based on the fundamentals of quantitative genetics; (b) model corresponding to a cross-age concept of

trait transmission. PJ and PA correspond to parental trait as juvenile and adult, respectively, and likewise for the offspring (OJ and OA). r2e
and s2g correspond to the exogenous variances of size at birth, and of growth until the juvenile stage (r2e J and s2g J

) and of growth (r2e A and

s2g A). b, bdev and binh correspond to regressions, namely for development (b and bdev) and inheritance (binh). Finally, BV are breeding values.

Although the genetic constitution is constant over an individual’s life, different genes are activated throughout life, which is denoted by

distinguishing BV for both juvenile and adult stages.
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assumption that h2 is constant over a period of time) to

a trait is commonly assumed in quantitative genetic

studies, and implies that the slope of the parent–off-
spring regression is constant. However, should a trait

evolve, changing the mean phenotype, then the inter-

cept of the parent–offspring regression necessarily

changes. If the intercept is assumed to not change, or a

model is constructed where the intercept cannot

change, then the dynamic of mean phenotype will be

highly restricted. Therefore, even the simplest possible

IPM constructed with a typical inheritance function,

which has not only a constant slope, but also a con-

stant intercept, will necessarily fail in describing the

evolution of mean phenotype.

As an example, consider a non-age-structured popu-

lation, with no class structure other than that associ-

ated with some focal trait, z. We denote the mean

trait value in generation g by �zg and its heritability as

h2. Without loss of generality, we assume that during

a period of equilibrium, z is measured such that its

mean is 10. We also assume that z is heritable

(h2 ¼ 0:5) but, as there is no selection, no phenotypic

change is observed (Fig. 7a). Suppose that the equilib-

rium is then disrupted and that both sexes experience

the same selection, which represents a change in

mean phenotype for the first generation (D�z01) of 1

unit (Fig. 7b). The offspring on mid-parent regression

is then E½z2� ¼ aþ h2 z1mþz1 f
2

, where a is the intercept

and z1m and z1f denote maternal and paternal pheno-

types, respectively. An IPM constructed using this

regression (appropriately handling the two sexes)

yields a mean phenotype in the next generation of

�z2 ¼ R
aþ h2 � z � p1ðzÞdz ¼ aþ h2 �z1 þ D�z01

� �
. The first

expression corresponds to the integral that would be

solved (typically numerically) by an IPM correspond-

ing to this example, and p1ðzÞ is the probability den-

sity function of phenotype after selection but before

reproduction in generation 1. The second expression is

the analytical solution for this integral, made possible

by assuming a linear function. Under the conditions

set for this example, this expression would be

�z2 ¼ 5þ 0:5 � ð10þ 1Þ ¼ 10:5. This change satisfies the

breeder’s equation for the change in mean phenotype

across generations �ziþ1 � �zi ¼ h2D�z0. The problem arises

in the next generation.

Let us suppose that selection is now relaxed, such

that the within-generation change in phenotype due

to selection, D�z02, is zero. In the absence of selection,

drift, immigration and mutation, we expect no

change in allele frequencies (Wright, 1937) and there-

fore no evolution. Consequently, we expect no change

in mean phenotype (Fig. 7c). In a very simple

non-age-structured IPM, we would use the current

distribution of trait values (g ¼ 2) and the same

inheritance function to obtain the mean phenotype

in generation 3, and that would correspond to

�z3 ¼ R
aþ h2 � z � p2ðzÞdz ¼ aþ h2 �z2ð Þ, which in this case

would be 10.25 (Fig. 7d). In this example, an IPM

would predict the trait moving back 0.25 phenotype

units, which corresponds to reverting back to half of

the initial response to selection. If z2 is any value

other than 10, the static biometric inheritance func-

tion results in changes in mean phenotype in the

absence of selection, drift, mutation and migration.

Continuing the analytical iteration of the mean phe-

notype in this simple IPM, we show that with each

subsequent generation (iteration step, in this simple

argument), the mean phenotype regresses further

towards a value determined by the nature of the static

biometric inheritance function (Fig. 7e). If selection is

sustained, then the dynamic of the mean phenotype

even in this very simple IPM will be wrong, represent-

ing a component associated with the response to selec-

tion, and a spurious change due to the misconception

of biometric inheritance associated with a parent–off-
spring regression with a fixed intercept. A biometric

inheritance function with a constant slope and inter-

cept is inconsistent with evolution.
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Fig. 6. Proportion of parent–offspring
regression recovered by a cross-age

parent–offspring regression, in

juveniles, (a), and adults, (b). In both

cases, covariance in growth, genetic

(raJ;A
) and environmental (reJ;A ), was

assumed to not exist, and the

remaining parameters were set as

follows r2aJ ¼ 1, r2e J ¼ 1 and r2e A ¼ 0.

The true values were used as reference

in both plots.
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Study case: bighorn sheep

We used a pedigreed population of bighorn sheep from

Ram Mountain, Alberta, Canada (52∘ N, 115∘W) to

assess the performance of the development and inheri-

tance functions as implemented in standard IPMs. Both

quantitative genetic (e.g. Coltman et al., 2003; Wilson

et al., 2005) and IPM analyses (Traill et al., 2014) have

been conducted for this study system. This isolated pop-

ulation has been the subject of intensive individual-

level monitoring since 1971. Sheep are captured and

weighed multiple times per year between late May and

late September. For detailed information on the study

system, see Jorgenson et al. (1993), Festa-Bianchet et al.
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Fig. 7. The consequences of assuming a constant intercept for the parent–offspring (PO) regression across generations. (a) Population at

equilibrium, where mean phenotype is 10; (b) period of selection. Selection before reproduction causes mean parental size to change from

10 to 11 (D�z01 ¼ 1). Mean offspring phenotype (z2) is 10.5, which implies a parent–offspring regression given by �z2 ¼ 5þ 0:5 � ð�z1 þ D�z01Þ,
and therefore h2 ¼ 0:5 and an intercept of 5; (c) relaxed selection. When mean phenotype changes across generations, in this case from 10

to 10.5, the intercept of the parent–offspring regression necessarily changes as well. In a case of no selection in generation 2, the parent–
offspring regression is given by �z3 ¼ 5:25þ 0:5 � �z2; (d) relaxed selection with constant intercept. If the intercept is assumed to remain

constant, and the first parent–offspring regression is used to estimate the mean phenotype in generation 3 (z3), instead of the true value

10.5, 10.25 is obtained instead; (e) iteration of mean phenotype to subsequent generations of relaxed selection, both under a model with a

genetical notion of inheritance and an analytical iteration of a simple IPM with a biometric inheritance function with a fixed intercept. In

(c) and (d), the distribution in grey corresponds to the previous generation.
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(1996) and Coltman et al. (2003). We analysed individ-

ual age-specific masses adjusted to September 15 (see

Martin & Pelletier, 2011; Traill et al., 2014) for 461

ewes captured from 1975 to 2011 and aged up to 10

years (2002 ewe-years). We built two statistical models,

one reflecting how the ontogenetic development of size

and inheritance have been typically modelled in IPMs,

and the other corresponding to a possible alternative to

estimating these two key functions, a random regres-

sion animal model of body size (Kirkpatrick et al., 1990,

1994; Meyer & Hill, 1997; Meyer, 1998; Wilson et al.,

2005). We chose random regression because it is widely

used to study the genetics of developmental trajectories

and it satisfies a number of criteria, namely: (i) it

accommodates across-age covariance, over and above

that attributable to measured values of focal traits, (ii)

it incorporates the known fundamentals of quantitative

genetics, (iii) it is economical in terms of the number of

parameters that need to be estimated, and (iv) its basic

structure is compatible with IPMs. Criteria (i) and (ii)

result in random regression analysis providing an

approach for characterizing development and inheri-

tance that should be robust to regression to the mean,

as imperfectly measured quantities are not used as pre-

dictor variables, and as it uses a modern notion of

inheritance of quantitative traits. Nonetheless, other

options can also avoid regression to the mean, includ-

ing a formulation of an explicit genetic autoregressive

size-dependent model that accounts for measurement

error. Also, although the random regression approach,

and potentially other models using quantitative genetic

approaches characterizing variation in phenotype and

its inheritance, could profitably be integrated into the

broader IPM framework, for simplicity we refer to the

former approach as ’IPM’ and to the latter as ’RRM’.

Both models were fitted in a Bayesian framework,

using MCMCglmm (Hadfield, 2010), and diffuse inverse

gamma priors for all (co)variance components.

Standard IPM approach

We used a linear model to estimate the development

and inheritance functions used in typical IPMs. We

modelled observed ewe mass at each age as a function

of mass at the previous age, with separate intercepts

and slopes for each age. For lambs, we estimated a

regression of lamb mass on the mass of their mother

2 months before conception (previous September). For-

mally, the model is described as

xi;a �Nðua þ bdeva � Iadulti � xi;a�1 þ binh

�Ilambi �mothermassi; ei;aÞ;
(13)

where xi;a is the observed mass of individual i at age a,

ua age-specific intercepts, bdeva age-specific size slopes

and binh is the inheritance function coefficient. Ilamb

and Iadult are indicator variables for lambs and older

individuals, respectively. Finally, ea are heterogeneous

residuals per age. The estimated fixed effects and vari-

ance parameters are presented in Table 1.

Random regression of size

To model the family of size-at-age functions in bighorn

sheep ewes, its genetic basis and associated phenotypic

and genetic covariances of size across age, we fitted a

random regression animal model (Kirkpatrick et al.,

1990, 1994; Meyer & Hill, 1997; Meyer, 1998; Wilson

et al., 2005) of the form

xi;a �N la þ f1ðdi; n1; aÞ þ f2ðBVi; n2; aÞ; ei;a
� �

; (14)

where xi;a is the mass of individual i at age a and la are

age-specific intercepts. f1 and f2 are random regression

functions on natural polynomials of order n, for perma-

nent environment effects and additive genetic values,

respectively. The permanent environment effect refers

to all consistent individual effects other than the addi-

tive genetic effect (see Kruuk & Hadfield, 2007). In

both f1 and f2, n was set to 2, allowing the estimation

of random intercepts, slopes and curvatures. Polynomi-

als were applied to mean-centred and standard devia-

tion-scaled ages to improve convergence. Finally,

heterogeneous residuals across ages were estimated

(ei;a). d and BV, vectors with individual and pedigree

values, respectively, were assumed to follow normal

distributions, d�Nð0;DÞ and BV �Nð0;G� AÞ. Both

D ¼ Ir2i , where r2i is the permanent environment effect

of individual i, and the additive genetic variance–co-
variance matrix, G, are 3 9 3 matrices, A is the pedi-

gree-derived additive genetic relatedness matrix, and

⊗ denotes a Kronecker product. More information on

partitioning phenotypic variance into different compo-

nents of variation using pedigrees and the animal

Table 1 Coefficients for the IPM standard approach, including

regressions of mass at age a on mass at age a � 1, and of lamb’s

mass on mother’s mass at conception for the bighorn sheep

population of Ram Mountain. The values correspond to posterior

modes and 95% quantile-based credible intervals.

Age Intercept Slope Residuals

1 17.30 (13.61–21.16) - (---) 17.87 (15.63–20.80)

2 25.62 (21.41–29.63) 0.71 (0.56–0.87) 20.66 (17.43–25.04)

3 25.91 (21.45–30.56) 0.70 (0.59–0.79) 17.51 (14.83–21.30)

4 35.01 (29.42–40.77) 0.51 (0.41–0.60) 18.04 (15.15–21.98)

5 26.75 (19.78–34.07) 0.62 (0.52–0.74) 15.13 (12.51–18.69)

6 28.04 (19.07–36.47) 0.62 (0.49–0.75) 17.79 (14.80–22.32)

7 28.05 (19.97–35.28) 0.62 (0.51–0.73) 12.63 (10.35–16.17)

8 27.34 (17.14–37.05) 0.63 (0.49–0.77) 15.04 (12.31–19.43)

9 23.04 (13.72–32.60) 0.68 (0.55–0.81) 11.48 (9.17–15.10)

10 20.30 (7.56–33.20) 0.72 (0.54–0.90) 15.14 (11.83–21.05)

Posterior mode and 95% credible interval for the inheritance

regression: 0.12 (0.07–0.18).
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model is provided by Lynch & Walsh (1998), Kruuk

(2004) and Wilson et al. (2010). To obtain the genetic

variance–covariance matrix for the 10 ages, the follow-

ing equation is used

G10 ¼ UGUT ; (15)

where G10 is the resulting 10 9 10 genetic matrix, G is

the 3 9 3 genetic matrix estimated by the model and Φ
is a 1093 matrix with the polynomials evaluated at

each age (Kirkpatrick et al., 1990; Meyer, 1998). A

10910 matrix, D10, for individual effects at the 10 ages

can be obtained similarly. The estimated fixed effects

and variance parameters are presented in Table 2.

Recovering resemblance within and across
generations

We compare the correlations in mass among ages

implied by the development functions typically adopted

in IPMs and those derived from a RRM, to the observed

phenotypic correlations (Fig. 8a–c). We used the path

rules, as described for the theoretical models, to obtain

the correlation matrix for size at different ages implied

by the IPM approach. There was no need to do the

same for the RRM, as these correlations were recovered

with eqn (15). We also analyse the proportion of

correlation recovered for different gaps between ages

(projection steps, Dt) by both models (Fig. 8d). The

RRM estimates a phenotypic correlation matrix

(Fig. 8c) that is much more similar to that observed

(Fig. 8a) than the correlation matrix implied by the

IPM approach (Fig. 8b). Across-age correlations are bet-

ter recovered by the RRM than by the IPM approach

(Fig. 8d). The proportion of correlation in size among

ages recovered by an IPM follows the pattern predicted

in Fig. 2, with high recoveries for a single projection

step, and then rapidly decaying to near zero (Fig. 8d).

As predicted by our theory, typical parameterizations of

the development functions severely underestimate simi-

larity of trait values within individuals across ages.

Second, we show the parent–offspring regressions

recovered by the RRM and the IPM, and use the ’ob-

served’ regressions as reference (Fig. 9). These latter

values correspond to regressions of daughter mass on

maternal mass for all matching ages, also including ran-

dom intercepts for mother ID by age, year and cohort,

as well as heterogeneous residuals by age. The cross-

age biometric inheritance function implemented in

IPMs recovers parent–offspring regression for lambs

(age 1), but for older ages most similarity between par-

ents and offspring is missed (Fig. 9). In contrast, the

patterns of parent–offspring similarity recovered by the

RRM are of the observed order of magnitude through-

out most of the life cycle (Fig. 9).

Discussion

We have shown analytically that IPMs, as typically

implemented, will generally, and often severely, under-

estimate quantities that are critical to evolutionary

inference. Both our theoretical results and our empiri-

cal example show that phenotypic covariances within

and across individuals can be effectively zero in these

models, due purely to artefacts of their construction.

Additionally, the static nature of the inheritance func-

tion (parent–offspring regressions with fixed intercept)

artificially reverses any response to selection. Conse-

quentially, IPMs, as typically constructed, will inevita-

bly suggest that evolution is not an important aspect of

the dynamics of traits over time. We suggest, and

demonstrate empirically, alternative approaches that

could be used to characterize some key functions in

IPMs. IPMs in principle are extremely useful and highly

flexible, and their original conceptualization (Easterling

et al., 2000; Ellner & Rees, 2006) should be broadly

compatible with a variety of alternative ways of charac-

terizing variation in growth and inheritance.

The main reason why development functions in IPMs

fail to recover within-generation covariances of traits is

regression to the mean. This problem is well under-

stood in evolutionary and ecological studies (e.g. Kelly

& Price, 2005). In IPMs, this problem is particularly sev-

ere because the multiple age-specific projection steps

Table 2 Coefficients for the random regression animal model on

body mass, including age-specific fixed intercepts and residuals

(upper part), as well as estimates for the intercept, slope (Age) and

curvature (Age2) of the random effects on breeding values (BV)

and permanent environment (d, lower part) for the bighorn sheep

population of Ram Mountain. The values correspond to posterior

modes and 95% quantile-based credible intervals.

Age-specific intercepts and residuals

Age Intercept Residuals

1 25.78 (25.17 to 26.36) 8.02 (4.90 to 11.89)

2 44.22 (43.48 to 44.94) 13.67 (11.06 to 17.51)

3 57.05 (56.26 to 57.83) 15.94 (13.08 to 19.99)

4 63.65 (62.85 to 64.42) 11.17 (8.97 to 14.41)

5 66.77 (65.92 to 67.59) 9.60 (7.54 to 12.51)

6 69.17 (68.27 to 70.01) 9.92 (7.73 to 13.25)

7 70.33 (69.46 to 71.16) 6.64 (5.01 to 9.01)

8 71.09 (70.17 to 71.97) 8.48 (6.45 to 11.54)

9 71.38 (70.41 to 72.28) 6.64 (4.64 to 9.73)

10 71.38 (70.15 to 72.49) 9.57 (6.20 to 14.95)

Random regression on age

Term BV d

Intercept 7.76 (2.59 to 16.77) 7.47 (1.75 to 13.56)

cov (Intercept, Age) 0.22 (�1.27 to 2.84) 2.38 (0.19 to 4.24)

cov (Intercept, Age2) �0.83 (�3.16 to 0.32) �1.42 (�3.15 to 0.16)

Age 0.23 (0.05 to 1.63) 2.06 (0.73 to 3.39)

cov (Age, Age2) 0.07 (�0.57 to 0.34) �1.12 (�1.91 to �0.36)

Age2 0.20 (0.05 to 0.92) 0.83 (0.26 to 1.65)
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compound the effect of measurement error to reduce

covariance among predictor and response variables.

Consequently, covariance between nonadjacent ages,

which can be substantial (Fig. 8a, Wilson et al., 2005),

is severely underestimated (Fig. 8b), even when mea-

surement error is relatively small (eqns 1 and 2).

The failure of biometric inheritance functions to pre-

dict phenotypic similarity among relatives is partially

also a direct manifestation of regression to the mean.

Indeed, it is the canonical manifestation of regression

to the mean – coined in exactly this context by Galton

(1886). What we now understand is that Mendelian

factors are inherited and that, in terms of statistical

mechanics of quantitative genetics, environmental vari-

ation can be regarded as measurement error obscuring

the influence of breeding values. Any model of inheri-

tance that does not include our understanding of how

inheritance drives similarity among relatives in quanti-

tative traits (Fisher 1918, 1930; Wright 1922, 1931)

cannot be expected to suffice for even the most basic

evolutionary predictions. Another issue arises from

assuming that the biometric inheritance function is

constant. Whenever the mean phenotype changes, the

intercept of the parent–offspring regression necessarily

changes as well. To presume that the intercept of the

parent–offspring regression is constant across genera-

tions constrains the mean phenotype to be able to

respond only transiently to selection, as we show by

analytically iterating the mean phenotype in a simple

IPM model structure (Fig. 7d). We reiterate that our

criticism of a constant inheritance function is not a crit-

icism of models assuming a constant heritability,
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whether that heritability is modelled using a genetical

(i.e. using constant r2a and r2z ) or a biometric approach

(i.e. using a parent–offspring regression with a constant

slope). Rather, the key point is that the mean pheno-

type cannot evolve in a model where a parent–offspring
regression has a fixed intercept.

In our theoretical models, we use simple but general

development and inheritance functions that are specifi-

cally designed to isolate these two fundamental pro-

cesses from each other. In practice, however, the

undesirable behaviours that we have modelled sepa-

rately will interact. Importantly, in iteroparous organ-

isms, where multiple episodes of reproduction occur

over the lifetime, regression to the mean in develop-

ment functions will further obscure relationships

between parents and offspring, with increasing effects

as parents age (Chevin, 2015). Additionally, biased

estimates of covariance of parents and offspring are

compounded across multiple generations. The underes-

timation of similarity between parents and offspring

will be compounded at each generation, leading to

increasingly severe undervaluation of the relevance of

relationships among more distant relatives to the evolu-

tionary process. This interaction is very evident in the

empirical example we present. Parent–offspring regres-

sions recovered with the development and inheritance

functions generally used in IPMs (Fig. 9) could not be

predicted by the two-age theoretical model presented

here, and specifically by eqn (11).

IPMs with typical cross-age biometric inheritance

functions have been recommended for studying evolu-

tionary responses to selection (Coulson et al., 2010;

Coulson, 2012; Rees et al., 2014). Some studies apply-

ing this approach have concluded that nonevolutionary

changes in trait distributions are the major contributors

to temporal changes in phenotype (Ozgul et al., 2010;

Traill et al., 2014). Our theoretical findings do not indi-

cate that these conclusions are wrong. Rather, we

demonstrate that these are the conclusions that this

kind of model must inevitably generate when applied

to any system, regardless of whether evolutionary

change is important or not. As typical parameterizations

of IPMs neglect the vast majority of similarity between

parents and offspring, they cannot attribute phenotypic

change to evolution. Concern about how IPMs model

the transmission of dynamic traits had been previously

raised (Hedrick et al., 2014; Chevin, 2015; Vindenes &

Langangen, 2015; van Benthem et al., 2016). Particu-

larly, Chevin (2015) identified some issues addressed in

this paper, presenting insightful numerical examples

that illuminate the main concern with the cross-age

structure of the inheritance function. Besides our ana-

lytical demonstrations, and the numerical examples

made available by Chevin (2015), we also provide an

empirical example, using random regression analysis to

address the issues presented here. The random regres-

sion model provided substantial improvement in

recovering both correlations across ages within a gener-

ation (Fig. 8d), and parent–offspring regressions reflect-

ing how breeding values are transmitted over

generations (Fig. 9).

Vindenes & Langangen (2015) discuss joint models of

static traits (constant through life) and dynamic traits

(such as those typically handled in IPMs) in the general

IPM framework. They suggest that incorporation of sta-

tic traits could solve some of the problems that had

begun to be acknowledged about evolutionary infer-

ence with IPMs (Hedrick et al., 2014; Chevin, 2015).

The authors propose that the static trait, birth mass in

their example, could be modelled as influencing mass

at all other ages and demographic rates, which would

allow covariances among birth mass and older ages to

be well recovered. In a sense, using random regression

animal models as we suggest treats breeding values (as

opposed to some realized phenotypic value) as a static

trait, but critically also models the inheritance of breed-

ing values, not as some observed function, but accord-

ing to the principles of quantitative genetics. It is

noteworthy to mention that a genetic notion of trait

transmission has already been implemented into an

IPM for a single Mendelian locus (Coulson et al., 2011).

The authors constructed an IPM that describes the

dynamics of body mass and a biallelic gene determining

coat colour in wolves (Canis lupus). In contrast to bio-

metric IPMs of quantitative traits, Coulson et al. (2011)

conclude that the genetic variance within the study

population is enough for natural selection to cause evo-

lution. In fact, it is in principle relatively straightfor-

ward to implement an IPM that uses the basic

principles of inheritance of polygenic quantitative traits

to define inheritance functions of breeding values; such

exercises have indeed begun for a single trait (Childs

et al., 2016). It is easy to conceive of multivariate

extensions of such inheritance functions (based on

multivariate versions of eqns 3 and 4), whereby one

could treat age-specific sizes as different characters, and

estimate genetic variances and covariances from data.

Nonetheless, a great deal of work is still required. For

long-lived organisms, genetic covariance matrices of

age-specific traits would be very challenging to estimate

with useful precision (Wilson et al., 2010). Further-

more, the dimensionality of resulting phenotypes

would overwhelm typical strategies for implementing

IPMs (Coulson et al., 2010; Merow et al., 2014; Rees

et al., 2014). In practice, a key challenge, but a sur-

mountable one, will be to develop sufficiently flexible,

low-dimensional characterizations of the genetic basis

of development for practical estimation and subsequent

modelling. The function-valued trait approach we

adopted with our random regression model of bighorn

sheep ewe mass is just one such possibility. Other

approaches could possibly be even more useful; for

example, uses of various autocorrelation functions

(Pletcher & Geyer, 1999; Hadfield et al., 2013), or factor
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analytic mixed model (de los Campos & Gianola, 2007;

Meyer, 2009; Walling et al., 2014).

Summary

We have shown analytically and using and empirical

example that standard implementations of integral pro-

jection models will generally severely underestimate

the likelihood of evolutionary change. IPMs to date

have been constructed using characterizations of devel-

opment and inheritance that would not stand up to

scrutiny in studies focusing on development and inheri-

tance. It is not surprising that more complex models

built on such functions behave poorly. In fact, insofar

as the ability of IPMs to track the full joint distribution

of phenotype has been suggested as their main quality

for ecological inference, the problems that preclude

their typical use for evolutionary inference should be of

equal concern to ecologists. Importantly, we have sug-

gested ways in which more nuanced models of devel-

opment, and a modern understanding of inheritance,

can be incorporated into the general IPM approach. A

great deal more work is required before IPMs based on

adequate models of development and inheritance will

be field-ready. As a next step, careful studies of the per-

formance of different approaches for characterizing the

genetic basis of developmental trajectories, with partic-

ular focus on approaches that could be incorporated

into an IPM framework, are needed.
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