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Comment on ‘‘Present-day expansion of American
beech in northeastern hardwood forests: Does
soil base status matter?’’1

Christian Messier, Nicolas Bélanger, Jacques Brisson, Martin J. Lechowicz, and
Dominique Gravel

Abstract: In a recent rapid communication, Duchesne and Ouimet (2009. Can. J. For. Res. 39: 2273–2282) reported that
the current expansion of American beech (Fagus grandifolia Ehrh.) in Quebec is mainly caused by soil base cation deple-
tion due to atmospheric acid deposition. They based their conclusions on an examination of the relationships between stem
densities in the sapling and tree strata compared against canopy composition and the availability of base cations in 426
sample plots. Here in this comment, we raise some shortcomings with their study and provide a more prudent and com-
plete perspective on the complex dynamics associated with fluctuations in American beech and sugar maple (Acer saccha-
rum Marsh.).

Résumé : Dans un article publié récemment, Duchesne et Ouimet (2009. Rev. Can. Rech. For. 39: 2273–2282) rapportent
que l’épuisement des cations basiques dans le sol dû aux dépôts atmosphériques acides serait en grande partie responsable
de l’expansion actuelle du hêtre à grandes feuilles (Fagus grandifolia Ehrh.) au Québec. Ils basent leur conclusion sur un
examen des relations entre la densité des tiges dans la strate des gaules et celle des arbres comparativement à la composi-
tion du couvert et à la disponibilité des cations basiques dans 426 placettes échantillons. Dans cette communication, nous
soulevons certaines lacunes de leur étude et nous proposons une perspective plus complète et plus prudente de la dyna-
mique complexe associée aux fluctuations du hêtre à grandes feuilles et de l’érable à sucre (Acer saccharum Marsh.).

[Traduit par la Rédaction]

Reports of changes in the relative abundance of sugar ma-
ple (SM) (Acer saccharum Marsh.) and American beech
(AB) (Fagus grandifolia Ehrh.) near their northern range
limits and investigations of the possible causes of such fluc-
tuations are important questions both ecologically and in
terms of forest management. The dynamics of these species
in beech–maple forests have been the subject of numerous
studies in recent years (e.g., Beaudet et al. 1999; Brisson
and Bouchard 2003; Duchesne et al. 2005; Duchesne and
Ouimet 2008; Nolet et al. 2008; Takahashi and Lechowicz
2008; Gravel et al. 2010; Takahashi et al. 2010). In a recent

rapid communication, Duchesne and Ouimet (2009) (here-
after D&O) reported that ‘‘American beech is currently ex-
panding in the sugar maple range of Quebec’’ and that ‘‘soil
base cation depletion, caused in part by atmospheric acid
deposition, is among the main factors involved in the
present-day expansion of American beech’’. Their conclu-
sions are based on an examination of the relationships be-
tween stem densities in the sapling and tree strata compared
against canopy composition and the availability of base cati-
ons at 426 sample plots in southern Quebec. In their paper,
D&O argued that overstory SM tree health declined as a re-
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sult of atmospheric acid deposition and concomitant soil
acidification, leading to an opening of the canopy and in-
creased light transmission to the understory that favored the
recruitment of AB over SM. They contended that SM is
undergoing a regeneration failure, while AB, being less sen-
sitive to soils low in base cations, is benefiting from the de-
creased competition with SM as well as increased
understory light associated with SM decline. Although some
of the results reported by D&O might be consistent with this
hypothesis, we argue that their overall conclusions are based
on some logically flawed interpretations and an unrepresen-
tative sample, comprise several overstatements, and offer a
misleading and oversimplified explanation of a rather com-
plex phenomenon. The purpose of this comment is to pro-
vide a more prudent and complete perspective on the
complex dynamics associated with fluctuations in AB and
SM abundance.

Expansion of American beech and
regeneration failure of sugar maple

D&O related the increase of AB to site characteristics,
and more particularly to soil properties. While we agree
that there have been reports of increases in AB abundance
locally (e.g., Beaudet et al. 1999) and regionally over rela-
tively short time scales (Duchesne et al. 2005), we argue
that the methodology employed by D&O is inappropriate to
document and, most of all, locate increases in AB abun-
dance relative to SM. Their conclusion of an increase in
AB at the expense of SM is based on static observations of
relatively small differences in the relative abundance of spe-
cies between saplings (14.5% for AB and 40.1% for SM)
and trees (9.7% for AB and 46.6% for SM) in a subjectively
selected set of plots (D&O’s Fig. 1). Such static informa-
tion, and in D&O’s case for only two size classes, cannot
support inferences of past or future change in species com-
position. Condit et al. (1998) demonstrated from both theory
and empirical data that ‘‘static information on the size distri-
bution is not a good predictor of future population trends’’.
Concluding that the relative abundance of saplings deter-
mines the future relative abundance of trees assumes that
transition rates are the same for all species and over all life
history stages, which is unsupported by empirical data (Pa-
cala et al. 1994; Kobe et al. 1995; Kneeshaw et al. 2006;
Gravel et al. 2008).

SM decline in Quebec caused by
atmospheric acid deposition and soil
acidification

D&O proposed that atmospheric acid deposition reduced
soil base cation reserves, affecting SM nutrition and health.
While there is strong evidence for an adverse effect of acid
deposition on soil base cation reserves in northeastern North
America (e.g., Likens et al. 1996; Bélanger et al. 2002;
Thiffault et al. 2007), the sampling design in D&O was not
developed to show the extent of soil acidification in Quebec,
nor do their data document this phenomenon. The design
simply offers information regarding a range of sites with
contrasting productivities, including different availabilities
in Ca and Mg that are correlated with sapling and tree abun-

dance of AB and SM. This is insufficient basis to conclude
that soil acidification due to air pollution is causing a wide-
spread SM decline and regeneration failure in Quebec. Only
a few studies in the northeastern United States (Pennsyl-
vania) linked SM decline to low base cation availability,
and these were done on acidified, unglaciated soils (e.g.,
Horsley et al. 2000; Bailey et al. 2004). Others have argued
that SM nutrition and health are less affected by air pollu-
tion on younger, glaciated soils (Drohan et al. 1999, 2002;
Miller and Watmough 2009), although there seems to be
widespread SM decline in western Pennsylvania (Hall et al.
1999). In the latter case, however, the decline was not asso-
ciated with Ca and Mg deficiencies, but rather to severe
drought, late spring frosts, and unusual defoliation events.
Finally, although the observation that experimental liming
improves crown vigor, nutrition, and growth (Moore et al.
2000, 2008) is consistent with a hypothesis that SM decline
can be caused by soil base cation depletion, this is not deci-
sive evidence that soil acidification induced by air pollution
is causing SM decline so long as there are reasonable alter-
native explanations. For example, a response of SM to fertil-
ization could simply indicate that trees are limited by base
cations because they are found on soils developed from bed-
rock with intrinsically low base cation levels (e.g., Precam-
brian Shield granitic rocks). Moreover, D&O did not sample
in the southwestern part of Quebec where the SM decline
was reported to be the most severe (e.g., Paré and Bernier
1989; Ouimet and Camiré 1995) or from the region south
and east of Montreal in the St. Lawrence River Valley,
which is characterized by base cation rich soils developed
from the Champlain Sea lacustrine sediments (e.g., Beaudet
et al. 1999).

Relative basal area of dead SM trees used as
a proxy to SM decline

D&O observed that the relative basal area of dead SM
was nearly double on sites where AB was present among
saplings compared with sites where AB was absent. Based
on this and on the fact that this same variable explained
10%–12% of the variance in the basal area and relative
basal area of AB in the sapling stratum, they claim that
‘‘AB was favoured by the decline of SM canopy trees’’.
Such reasoning is based on assumptions that the ‘‘Relative
basal area of dead SM integrates stand health over a fairly
long period of time’’ and that relative basal area of dead
SM is an adequate proxy for the presence of SM decline.
Although SM decline might indeed lead to an increased per-
cent basal area of dead SM, an increased percent basal area
of dead SM is not necessarily caused by maple decline. Ice
storm damage, insect and disease outbreaks, or simply age-
dependent mortality all can account for an increased relative
basal area of dead SM. For instance, in the D&O study, data
from stands at all successional stages were combined within
a data set containing a wide range of basal area typical of
recently logged forests (lowest basal area = 0.3 m2�ha–1) to
mature forests (basal area >40m2�ha–1). The higher propor-
tion of dead SM observed in the presence of AB saplings
might simply be related to the tendency for AB to be present
at later successional stages and a higher rate of SM mortal-
ity related to overall greater tree age in late-successional
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stages. There clearly are other causal factors and alternative
interpretations that were not considered by D&O, which
undermines their conclusions.

SM sapling distribution and abundance as a
function of soil base cation availability

D&O claimed that ‘‘failure of SM regeneration was
higher on base-poor sites’’, but their data do not support a
relationship between SM sapling distribution and soil ex-
changeable base cation concentrations. The results presented
in their Table 2 do not show any significant difference in Ca
and Mg availability between sites where SM saplings are
present versus absent, a point overlooked in the discussion.
D&O apparently based their conclusion instead on results
from Table 3 where they reported that SM relative basal
area in the sapling stratum increased with soil Ca and Mg
concentrations. However, the correlations supporting their
conclusion were weak (Spearman’s r of 0.113 and 0.111 for
Ca and Mg, respectively) and only marginally significant
(p < 0.071). Here, one should further note that no Bonfer-
roni or other correction to the level of significance was con-
sidered despite the large number of correlation tests (54) in
Table 3. D&O also overlooked the fact that there was no
correlation between SM absolute basal area in the sapling
stratum and base cations (Spearman’s r of 0.017 and 0.018
for Ca and Mg, respectively; Table 3). Finally, D&O failed
to mention the many contradictory observations on the rela-
tionships between SM–AB abundance and soil properties
(e.g., van Breemen et al. 1997; Beaudet et al. 1999; Schwarz
et al. 2003; Arii et al. 2005; Gravel et al. 2008). In our opin-
ion, D&O did not have sufficient quantitative and statistical
evidence to support their conclusion of a SM regeneration
failure associated with base-poor sites, nor therefore their in-
ferences attributing AB increases to a negative impact of at-
mospheric acid deposition on soil base cation status.

Conclusion
We believe that D&O should have considered and dis-

cussed published studies that do not concur with their main
hypothesis, been more careful in the interpretation of their
results, and tested alternative explanations for their observa-
tions. They also should have better explained why they had
selectively excluded parts of the most southern ranges of AB
and SM in Quebec that are highly relevant to the question.
There have been several reports of recent local or more
global increases in AB abundance in the temperate forests
of eastern North America (e.g., Beaudet et al. 1999; Forres-
ter et al. 2003; Duchesne et al. 2005; Busby et al. 2008) as
well as in SM (Siccama 1971; McIntosh 1972; Abrell and
Jackson 1977; Runkle 1990; Fain et al. 1994; Poulson and
Platt 1996; Foré et al. 1997). Several interacting factors can
play a role in determining the abundance of AB, including
its low palatability to deer, its ability to reproduce vegeta-
tively, its susceptibility to beech bark disease, and its re-
sponse to various types of disturbances including ice storms
and human activities such as harvesting (e.g., Rhoads et al.
2002; Brisson and Bouchard 2003; Leak 2006; Beaudet et
al. 2007; Long et al. 2007; Runkle 2007; Busby et al. 2008;
Takahashi and Lechowicz 2008; Takahashi et al. 2010). A
recent study also suggests that the distribution of SM and

AB is related to a major change in small-scale disturbance
history (Gravel et al. 2010). Moreover, the high shade toler-
ance of AB puts it at an advantage in long-term successional
trends (Kobe et al. 1995). Supporting this view is the fact
that presettlement abundance of AB has been repeatedly
shown to be higher than modern abundance (Siccama 1971;
McIntosh 1972; Simard and Bouchard 1996; Brisson and
Bouchard 2003).

Similarly, many other factors and mechanisms can be in-
volved in a decrease in SM density and an associated in-
crease in AB density; with the exception of harvest impacts,
none of these factors were mentioned by D&O. We suggest
that both local and large-scale variations in the relative
abundance of AB and SM most likely result from multiple
interacting factors. Oversimplified explanations and over-
statements retard rather than advance our scientific under-
standing of this important aspect of the long-term dynamics
of eastern North American forests.
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