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Summary

1. Food webs are the backbone upon which biomass flows through ecosystems. Dynamical models of biomass

can reveal how the structure of food webs is involved in many key ecosystem properties, such as persistence, sta-

bility, etc.

2. Inthiscontribution,wepresentBioEnergeticFoodWebs,animplementationofYodzis&Innes(TheAmeri-

canNaturalist139,11511175,1992)bio-energeticmodel,inthehigh-performancecomputinglanguageJulia.

3. We illustrate how this package can be used to conduct numerical experiments in a reproducible and standard

way.

4. A reference implementation of this widely used model will ease reproducibility and comparison of results

across studies.
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Introduction

Communityandecosystemecologistshavelongsoughttounder-

stand the diversity, properties and dynamics of multi-species

assemblages. The characteristics of communities emerge in

unpredictable ways because species influence one another

throughdirect, and indirect, ecological interactions. Seeing that

the coexistence of populations is constrained at least by feeding

interactions, models of the relationship between resources and

consumers have provided a useful and frequent tool in studying

the theory of community dynamics. Although these modelling

efforts started from simple, abstract models like those from the

Lotka–Volterrafamily(Baca€er2011),moretailoredandparame-

terizedmodelshaveemergedwhosegoalwastoincludeabroader

range of ecological and biological mechanisms, thus hopefully

providing more realistic representations of empirical systems.

Amongthese, the ‘bio-energetic’modelofYodzis&Innes(1992)

is a general representation of resource–consumer dynamics,

yielding results comparable to empirical systems, while needing

minimal parameters. To achieve this purpose, it uses allometric

scalingofmetabolicbiomassproductionandfeedingrates,mean-

ing that the flow of biomass from a resource to its consumer

dependsontheirbodymass.

Since the work of Yodzis & Innes (1992), Chesson &Kuang

(2008) have shown that the dynamics of ecological communi-

ties are driven not only by pairwise interactions but also by the

fact that these interactions are embedded in larger networks,

and Berlow et al. (2004) showed how disturbances affecting

species biomass or density cascade up, not only to the species

that they interact with but also with species up to two degrees

of separation from the original perturbation. In this context,

models of energy transfer through trophic interactions are bet-

ter justified when they account for the entire food-web struc-

ture, such as Williams, Brose &Martinez (2007) adaptation of

Yodzis & Innes (1992) model. This food-web bio-energetic

model has been used, for example, to show how food web sta-

bility can emerge from allometric scaling (Brose, Williams &

Martinez 2006b) or allometry-constrained degree distributions

(Otto, Rall & Brose 2007) (more past uses of the model are

described in Table S1, Supporting Information). Yet, although

these and other studies used the same mathematical model,

implementations differ from study to study and few have been

released.Motivated by the fact that thismodel addressesmech-

anisms that are fundamental to our understanding of energy

flow throughout food webs, we present BioEner-

geticFoodWebs (Bio-Energetic Food-Webs Model), a Julia

package implementing Yodzis & Innes (1992) bio-energetic

model adapted for food webs (Williams, Brose & Martinez

2007) with updated allometric coefficients (Brown et al. 2004;

Brose,Williams&Martinez 2006b).*Correspondence author. E-mail: eva.delmas@umontreal.ca
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This package aims to offer an efficient common ground for

modelling food-web dynamics, to make investigations of this

model easier, and to facilitate reproducibility and transparency

of modelling efforts. Taking a broader perspective, we argue

that providing the community with reference implementations

of common models is an important task. First, implementing

complex models can be a difficult task, in which programming

mistakes will bias the output of the simulations, and therefore

the ecological interpretations we draw from them. Second, ref-

erence implementations facilitate the comparison of studies.

Currently, comparing studies means not only comparing

results but also comparing implementations – because not all

code is public, a difference in results cannot be properly

explained as an error in either studies, and this eventually gen-

erates more uncertainty than it does answers. Finally, having a

reference implementation eases reproducibility substancially.

Specifically, it becomes enough to specify which version of the

packagewas used, and to publish the script used to run the sim-

ulations (as we do in thismanuscript).We fervently believe that

more effort should be invested in providing the community

with reference implementations of the models that represents

cornerstones of our ecological understanding.

Themodel

BIOMASS DYNAMICS

We implement the model as described by Brose, Williams

& Martinez (2006b), which is itself explained in greater

detail in Williams, Brose & Martinez (2007). This model

describes the flows of biomass across trophic levels, primar-

ily defined by body size. It distinguishes populations based

on two variables known to drive many biological rates:

body mass (i.e. how large an organism is, how much bio-

mass it stocks) and metabolic type (i.e. where the organism

get its biomass from and how it is metabolized). Once this

distinction made, it models populations as simple stocks of

biomass growing and shrinking through consumer–resources
interactions. The governing equations below describe the

changes in relative density of producers and consumers

respectively.

B0
i ¼ riGiBi �

X
j2consumers

xjyjBjFji

eji
eqn 1

B0
i ¼ �xiBi þ

X
j2resources

xiyiBiFij �
X

j2consumers

xjyjBjFji

eji
eqn 2

where Bi is the biomass of population i, ri is the mass-specific

maximum growth rate, Gi is the net growth rate, xi is i’s mass-

specificmetabolic rate, yi is i’s maximum consumption rate rel-

ative to its metabolic rate, eij is i’s assimilation efficiency when

consuming population j and Fij is the multi-resources func-

tional response of i consuming j:

Fij ¼
xijB

h
j

Bh
0 þ ciBiB

h
0 þ

P
k¼resources xikB

h
k

eqn 3

GROWTH RATE FUNCTION

The formulation of the growth rate Gi can be chosen among

three possibilities (Williams 2008) that all share the general

equation of Gi ¼ 1� s=k, where s is the sum of biomass of

populations in competition for a resource with carrying capac-

ity k. The first scenario, used by Brose, Williams & Martinez

(2006b), sets s ¼ Bi and k = K: species only compete with

themselves for independent resources. The issue with this for-

mulation is that the biomass and productivity of the system

scales linearly with the number of primary producers (Kondoh

2003). The second formulation ‘shares’ the resource across pri-

mary producers, with s ¼ Bi and k ¼ K=nP, wherein np is the

number of primary producers. Finally, a more general solution

that encompasses both of the previous functions is

s ¼ P
aijBj, with aii (intraspecific competition) set to unity

and aij (interspecific competition) taking values greater than or

equal to 0. Note that aij ¼ 0 is equivalent to the first scenario

of k = K and s ¼ Bi.

NUMERICAL RESPONSE

In eqn (3), xij is i’s relative consumption rate when consuming

j, or the relative preference of consumer i for j (McCann, Hast-

ings & Huxel 1998; Chesson & Kuang 2008). We have chosen

to implement its simplest formulation: xij ¼ 1=ni, where ni is

the number of resources of consumer j. The Hill coefficient h is

responsible for the hyperbolic or sigmodal shape of the func-

tional response (Real 1977), B0 is the half saturation density

and c quantifies the strength of the intraspecific predator inter-

ference – the degree to which increasing the predator popula-

tion’s biomass negatively affect its feeding rates (Beddington

1975; DeAngelis, Goldstein & O’neill 1975). Depending on the

parameters h and c the functional response can take several

forms such as type II (h = 1 and c = 0), type III (h > 1 and

c = 0) or predator interference (h = 1 and c > 0).

METABOLIC TYPES AND SCALING

As almost all organisms’ metabolic characteristics vary pre-

dictably with body mass (Brown et al. 2004), these variations

can be described by allometric relationships as described in

Brose, Williams & Martinez (2006b). Hence, the per unit bio-

mass biological rates of production, metabolism and maxi-

mum consumption follow negative power-law relationships

with the typical adult body mass (Savage et al. 2004; Price

et al. 2012).

RP ¼ arM
�0�25
P eqn 4

XC ¼ axM
�0�25
C eqn 5

YC ¼ ayM
�0�25
P eqn 6

where the subscripts P andC refer to producers and consumers

populations respectively,M is the typical adult bodymass, and

ar, ax and ay are the allometric constant. To resolve the

dynamics of the system, it is necessary to define a time-scale.
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To do so, these biological rates are normalized by the growth

rate of the producers population (cf. eqn 4) (Brose, Williams &

Martinez 2006b;Williams, Brose &Martinez 2007).

ri ¼ arM
�0�25
P

arM
�0�25
P

¼ 1 eqn 7

xi ¼ axM
�0�25
C

arM
�0�25
P

¼ ax
ar

MC

MP

� �0�25
eqn 8

In eqns (1) and (2), yi refer to the maximum consumption

rate of population i relative to its metabolic rate and thus

become a non-dimensional rate:

yi ¼ YC

XC
¼

ayM
�0�25
P

arM
�0�25
P

axM
�0�25
C

arM
�0�25
P

¼ ay
ax

eqn 9

As the biological rates also vary with the organisms metabolic

types, the maximum consumption rate of population i relative

to its metabolic rate (yi) is not the same for ectotherm vertebrate

(yi ¼ 4) and invertebrate (yi ¼ 8) predators; the same goes for

the allometric constant ax, which causes the mass-specific meta-

bolic rate (xi) to differ for ectotherm vertebrates (ax ¼ 0�88)
and invertebrates (ax ¼ 0�314). The diet of predators also

affects their assimilation efficiency (eij) which is greater for carni-

vores (eij ¼ 0�85) than for herbivores (eij ¼ 0�45).
Based on the observation that most natural food webs have

a constant size structure (Brose et al. 2006a; Hatton et al.

2015), the consumer–resource body-mass ratio (Z) is assumed

to be constant. The body mass of consumers is then a function

of their mean trophic level (T), and it increases with trophic

level whenZ ≥ 1 and decreases whenZ ≤ 1:

MC ¼ ZT�1 eqn 10

where MC is the body mass of consumers, normalized by the

bodymass of the basal species (T = 1) tomake the results inde-

pendent of the bodymass of the basal species.

SETTING THE SIMULATION PARAMETERS

All of these parameters can be modified before running the sim-

ulations (see ?model_parameters), and are saved alongside

the simulation output for future analyses. The default values

and meanings of the different parameters are explained in the

documentation of the model_parameters function. The

user can specify which species are ectotherm vertebrates by sup-

plying an array of boolean values, and the body mass of each

species by supplying an array of floating-point values.

SAVING SIMULATIONS AND OUTPUT FORMAT

The core function simulate performs the main simulation

loop. It takes two arguments, p – the dictionary generated

through the model_parameters function and containing

the entire set of parameters – and biomass, a vector that

contains the initial biomasses for every population. Three

keywords arguments can be used to define the initial

(start) and final (stop) times as well as the integration

method (use, see ?simulate or the online documentation

for more details on the numerical integration methods avail-

able). This function returns an object with a fixed format,

made of three fields: :p has all the parameters used to start

the simulation (including the food web itself), :t has a list of

all timesteps (including intermediate integration points), and

:B is a matrix of biomasses for each population (columns)

over time (rows). All measures on output described below

operate on this object.

The output of simulations can be saved to disc in either the

JSON (javascript object notation) format, or in the native jld

format. The jld option should be preferred as it preserves the

structure of all objects (JSON should be used when the results

will be analysed outside ofJulia, for example inR). The func-

tion to save results is called BioEnergeticFoodWebs.

save (note that the prefix BioEnergeticFoodWebs. is

mandatory, to avoid clashes with other functions called save

in base Julia or other packages).

MEASURES ON OUTPUT

The BioEnergeticFoodWebs package implements a vari-

ety of measures that can be applied on the objects returned by

simulations. All measures take an optional keyword argument

last, indicating over how many timesteps before the end of

the simulations the results should be averaged.

Total biomass (total_biomass) is the sum of the bio-

masses across all populations. It ismeasured based on the pop-

ulations biomasses (population_biomass).

The number of remaining species (species_richness)

is measured as the number of species whose biomass is larger

than an arbitrary threshold. As BioEnergeticFoodWebs

uses robust adaptive numerical integrators (such as ODE45

and ODE78), the threshold default value is e, i.e. the upper

bound of the relative error due to rounding in floating point

arithmetic. In short, species are considered extinct when their

biomass is smaller than the rounding error. For floating point

values encoded over 64 bits (IEEE 754), this is around 10�16.

An additional output related to species_richness is

species_persistence, which is the number of persisting

species divided by the starting number of species. A value of

species_persistence of 1 means that all species per-

sisted. A value of species_persistence of 0 indicates

that all species went extinct.

Shannon’s entropy (foodweb_evenness) is used to mea-

sure diversity within the food web. This measure is corrected

for the total number of populations. This returns values in ]

0;1], where 1 indicates that all populations have the same bio-

mass. It is measured as

H ¼ �
P

b� logðbÞ
logðnÞ ; eqn 11

where n is the number of populations, and b are the relative

biomasses (bi ¼ Bi=
P

B).

Finally, we used the negative size-corrected coefficient

of variation to assess the temporal stability of biomass

stocks across populations (Tilman 1995) (population_
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stability). This function also accepts an additional

threshold argument, specifying the biomass below which

populations are excluded from the analysis. For the same rea-

son as for the species_richness threshold, we suggest

that this value be set to either the machine’s e(0�0) (i.e. the
smallest value immediately above 0�0 that themachine can rep-

resent), or to 0�0. We found that using either of these values

had no qualitative bearing on the results described below.

Values close to 0 indicate little variation over time, and increas-

ingly negative values indicate larger fluctuations (relative to the

mean standing biomass).

Implementation and availability

The BioEnergeticFoodWebs package is available for the

Juliaprogramming language, and it is continuously tested on

thecurrentversionofJulia, thereleaseimmediatelybeforeand

on the current development version.Julia is an ideal platform

forthistypeofmodels,asitiseasytowrite,designedfornumerical

computations, extremely fast, easily parallelized and has good

numerical integration libraries. The package can be installed

from the Julia REPL using Pkg.add("BioEner-

geticFoodWebs"). A user manual and function reference is

available online at http://poisotlab.io/BioEnergeticFoodWebs.

jl/latest/, which also gives instructions about installing Julia,

thepackage,andhowtogetstarted.

The code is released under the MIT license. This software

note describes version 0.2.0. The source code of the pack-

age can be viewed, downloaded, and worked on at https://

github.com/PoisotLab/BioEnergeticFoodWebs.jl. Potential

issues with the code or package can be reported through the

Issues system or at https://gitter.im/PoisotLab/BioEnergetic-

FoodWebs.jl. The code is version-controlled, undergoes con-

tinuous integration, and has a code coverage of approximately

90% to this date.

Use cases

All functions in the package have an in-line documentation

available at http://poisotlab.io/BioEnergeticFoodWebs.jl/latest/

, as well as from the Julia interface by typing ? followed by

the name of the function. In this section, we will describe three

of the aforementioned use cases. The code to execute them is

attached as Data S1. As all code in Data S1 uses Julia’s par-

allel computing abilities, it will differ slightly from the examples

given in the paper. For all figures, each point is the average of

at least 500 replicates. We conducted the simulations in parallel

on 50 Intel Xeon cores at 2�00 Ghz. All random networks were

generated using the implementation of the niche model of food

webs (Williams & Martinez 2000), also provided in BioEner-

geticFoodWebs.

EFFECT OF CARRYING CAPACITY ON DIVERSITY

Starting from networks generated with the niche model with

20 species and connectance of 0�15 � 0�01, we investigate the

effect of increasing the carrying capacity of the resource (on a

log scale from 0�1 to 10).We use three values of the aij parame-

ter, ranging from 0�92 (the interspecific competition is smaller

than the intraspecific competition, which should favour coexis-

tence), neutrally stable (intra- = interspecific competi-

tion = 1), to 1�08 (the intraspecific competition is smaller the

interspecific competition, which should favour competitive

exclusion).

We run the simulations with the default parameters (given in

?model_parameters, and in the manual). Each simulation

consists of the following code:

# We generate a random food web

A = nichemodel(20,0.15, tolerance = 0.01,

toltype = :abs)

# Prepare the simulation parameters

for ainlinspace(0.92,1.08,3)

for Kinlogspace(1, 1, 9)

p = model_parameters(A, a = a,

K=K,
productivity=:competitive)

# We start each simulation with
# random biomasses in ]0;1[
bm = rand(size(A,1))

# And finally, we simulate.
out =simulate(p,bm,start=0,

stop=2000,use=:ode45)
# Andmeasure the output
diversity = foodweb_evenness(out,

last=1000,
threshold=eps())

end

end

The results are presented in Fig. 1.

EFFECT OF CONSUMER–RESOURCE BODY-MASS RATIO

ON STABIL ITY

In Fig. 2, we illustrate how the effect of body-mass ratio differs

between food webs with invertebrates and ectotherm verte-

brate consumers.

The body-mass ratio is controlled by the parameter Z (field

Z in the code), and can be changed in the following way:

scaling = logspace(�2, 4, 19) #creates an array

with 19 body-mass ratio values

# Prepare the simulation parameters

p = model_parameters(A,Z=scaling[i]) #

where i is a number from 1 to 19

Which species is an ectotherm vertebrate is controlled by the

parameter vertebrate of model_parameters, which is

an array of boolean (true/false) values. In order to have all

consumers be ectotherm vertebrates, we use

vert = round(Bool,trophic_rank(A).>1.0)

so that for each network, we prepare the simulations

with
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# Prepare the simulation parameters

for iin1:size(scaling, 1)

p = model_parameters(A, Z=scaling[i],
vertebrates=vert)
end

# where i is a number from 1 to 19, as there are 19 body-mass
ratio values in the
# scaling array

EFFECT OF CONNECTANCE ON COEXISTENCE

We investigate the effect of connectance on species coexis-

tence under different scenarios of interspecific competition

rates between producers (Fig. 3). These simulations there-

fore measure how the persistence of the entire food web is

affected by competition at the most basal trophic level. The

persistence is used here as the measure of coexistence.
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Fig. 1. Effect of increasing the carrying capac-

ity of the resource for different levels of com-

petition (a 2 [0�9,1�1]). For conditions of

neutral coexistence or coexistence (a ≤ 1),

diversity is stable until K � 5. For conditions

of competition exclusion (a > 1), diversity

increases forK<5, and decreases after.
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invertebrates. Note that the y axis is reversed,

as more negative values indicate less variation,

and therefore more temporal stability. The

shaded area represents negative scaling, i.e.

predators are smaller than their preys.
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for co in vec([0.050.15 0.25])

# We generate a random food web

A = nichemodel(20, co, tolerance = 0.01,

toltype =:abs)
# Prepare the simulation parameters
for ainlinspace(0.8,1.2,7)

p = model_parameters(A, a = a,

productivity=:competitive)
bm = rand(size(A, 1))

# And finally, we simulate.
out =simulate(p,bm,start=0,

stop=2000,use=:ode45)
# Andmeasure the output
persistence = species_persistence(out,

last=1000,
threshold=eps())

end

end

Values of a larger than 1 should result in competitive exclu-

sion in the absence of trophic interactions (Williams 2008).

Indeed, this is the case when Co=0�05 (only a single consumer

remains). Increasing connectance results in more species per-

sisting.

Conclusion

We have presented BioEnergeticFoodWebs, a reference

implementation of the bio-energetic model applied to food

webs.We provided examples that can serve as templates to per-

form novel simulation studies or use this model as an effective

teaching tool. Because the output can be exported in a lan-

guage-neutral format (JSON), the results obtained with this

model can be analysed in other languages that are currently

popular with ecologists, such as R, python, or MatLab.

Because we provide a general implementation that covers some

of the modifications made to this model over the years, there is

a decreased need for individual scientists to start their own

implementation, which is a both a time consuming and poten-

tially risky endeavour.
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